The Embedded Muse 172

Copyright 2009 TGG January 5, 2009

You may redistribute this newsletter for noncommengiaposes. For commercial use
contactinfo@ganssle.comSubscribe and unsubscribe info is at the end of thagl.em

EDITOR: Jack Ganssle jack@ganssle.com

CONTENTS:

- Editor’'s Notes

- Quotes and Thoughts

- Response to Last Issue’s Quotes and Thoughts
- Interesting Survey

- Priceless Datasheets

- Comments on My Microchip Comments
- Criminal Coding

- Reuse

- Jobs!

- Joke for the Week

- About The Embedded Muse

hkhkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhdhdhhhkhdhdhhhdhhhdhhhdhhhdhhdddhdddrrdrx*

This issue of The Embedded Muse is sponsored by Smart Biéaa&o
(http://smartbear.com/?EM

Complimentary Booksnttp://codereviewbook.com/?EMfor you and your team...

Get your complimentary copy of our book, Best Kept &sonf Peer Code Review. "A
very well-written 164 page book that's a fascinating reac bEmefits of inspection are
so profound that even the smallest outfits must tdkargage of this technique." -Jack
Ganssle

Order your complimentary book todayttp://codereviewbook.com?EM

hkhkhkkhkhkhkhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhdhhdhdhhhdhhhdhhhdhhhdhhdddhdddrxdrx*

Editor’s Notes

Did you know it IS possible to create accurate sched@es$Rat most projects consume
50% of the development time in debug and test, and thatat’ hard to slash that number

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

drastically? Or that we know how to manage the quanaglationship between
complexity and bugs? Learn this and far more at my BEttemwware Faster class,
presented at YOUR facility. Ségtp://www.ganssle.com/classes.htm

Brazil' The country of samba, feijoada and caipirinrdad, of course, embedded
systems. I'll present a two-day version of my BeRiemware Faster seminar in Sao
Paulo March 25th and 26th. Set#p://workshop.embarcados.com.far more
information.

Most of us have heard about the Zune debacle by now. tosisising that we're still
making leap year errors! Bob Paddock’s blog has a good déscrgtwhat happened:
http://softwaresafety.blogspot.com/

Larry Ruane has developed an open source protothread mamatgesrhbines event-
driven techniques with threads. Check bttip://protothread.wiki.sourceforge.net

Quotes and Thoughts

Geoff Patch sent in this one: The process of preparimgrqnts for a digital computer is
especially attractive, not only because it can be@oically and scientifically

rewarding, but also because it can be an aestheticiexpe much like composing poetry
or music. - Donald Knuth

Response to Last Issue’s Quotes and
Thoughts

> We know about as much about software quality probksitiey knew
> about the Black Plague in the 1600s. We've seen the vieigosies

> and helped burn the corpses. We don't know what causesdon't

> really know if there is only one disease. We justes - and keep

> pouring our sewage into our water supply.

Steve Litt disagreed: | disagree with this entirely. @a tevel, we know exactly what
causes bugs:

* Uninitialized variables and pointers

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

* Overrunning arrays

* Aiming pointers at the wrong place

* Using local strings as function returns
* Picket fence conditions

* Etcetera

Perhaps he meant we don't know how it could be solvgdinAl at least partially
disagree. If programmers had the time and compensatiom¢onthout bugs, they
could:

* Code modularly

* Document each subroutine: input, output and intentisioi effects
* Use proper and consistent naming and indentation

* No hotdog coding. One-liner loops aren't a badge of ceslne

* Build a test jig for each subroutine and test underiagrgonditions
* Test like that at each level up the tree, up and up ttothe

* gcc -Wall, then fix every single warning

* Get lint and use it

* Get and use valgrind or another leak finder

* Get and use a memory tromp finder (maybe run it under VWIS

3RD PARTY LIBRARY DEFENSIVE CODING

* If it isn't exquisitely documented, don't use it.

* |f its source isn't available, be very afraid

* But don't change its source unless absolutely necessary

* Run valgrind or another leak finder on it first, dump it ileaks or doesn't give back at
the end and the vendor can't give a good explanation

* Run a memory tromp finder, dump it there are memory traifmpsendor can't quickly
fix or give a good explanation for.

* Build several test jigs for it, and put it through its @acDump it if the vendor can't
explain and ameliorate every failure.

Of course, we don't have time for this. Time to maiké&ing. The company who

actually did this might get scooped every time and go obtisihess, or at least that's the
prevailing thought. The coder who does this will be slowecgrding to prevailing
thought) and will get fired.

Meanwhile, the customers prioritize newer, cheaper, sae bug free. It's not much
different from people enduring the hassle of shopping atMéat-because they save
money.

So bottom line, the human cause of bugs is nobody limgvib pay to keep them out.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Interesting Survey

Paul Bennett wrote in about a survey of the embedded:spane of your readers may
be interested in this survey:
http://www.esemagazine.com/index.php?option=com_contesk&iacw&id=529&Item
id=4 (WARNING from Jack: Firefox claims this site has heeported to contain
malware; however, Google’s inspection of it revealprablems over the last 90 days.)

It shows a couple of interesting trends.

Of note is that, on average, the software developbteamis have increased by almost
two people while they hardware development teams havanmedhstatic. The article
makes no mention of those developers who do both hardwdrsofiware.

This is of particular interest:- "The overwhelming feat tools are the
compiler/assembler and the debugger, with the osalfmsa distant third. It's also an
interesting anomaly that software testing tools arg atdhe bottom of the list, yet users
say that "test" in general is one of the key factotbe design process often taking the
majority of the design time. That leaves me to aahelthat users aren't happy with their
current software test tools."

| can understand why the software testing tools remaw gtiority, especially in the
true embedded systems market. Simpler and more digtttiggies can often yield
quicker and more definite results. | rarely use anythingpermomplex than a DMM,
Logic Probe and oscilloscope with my Forth tools forudgng hardware and software.

Good news is that software re-use is alive and wellrdempto the survey. That is re-use
of in-house developed software.

However, the really interesting item was this.

"Another response that | have a tough time justifyingpas tlevelopers this year consider
the "chip itself" to be more important than the ectesyssurrounding the chip (such as
software, tools, and support). | constantly harp on thegasor vendors how important it
is to have their ecosystem in place, and that's therealyoad to success. System
developers seem to think otherwise.

Also: “The number of developers that don't use programeragic in their designs
stands at 52%, a relatively (and surprisingly) high numb#en we asked them why,
the top answers were that programmable logic is too exmerconsumes too much
power, and is too hard to use. The vendors | spoke tdfatiédethese claims, but it
appears that that message is not getting out.”

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

| am wondering whether or not the reason that this séeims the case is that with some
of the newer low power processors being used, the acesfcan be simplified to use
really low power chips by letting the processor take uperod the slack. This may get to
be more the case if the new low power multi-core @ssors truly embrace the mesh
processing models where you can ascribe different furatiy to individual cores and
make the information flow accordingly.

| know you helped the article authors with some of tha-gaints and | have not raised
comment on that section.

Priceless Datasheets

Thilo Lauer contributed this fun datasheet: Today i'd likehare a short quote of the
SH7125 Hardware Manual from Renesas. While their overalitsire of their web
appearance is hopefully not to be compared with whatlbgtyinto silicon, | found this
sentence on the bottom of page 21 answering all my qusstio

"The flash memory can be programmed with a programmeéestipgorts programming
of this LSI, [...]"

Comments on My Microchip Comments

Jon Marsh wrote: | wanted to make a couple of pointgoom 8-bit vs. 32-bit comments
in the newsletter last week. | should probably staddwtaring my bias in that a majority
of my consulting work at the moment is migrating 8051 dedigii3ortex-M3.

There's no doubt that 32 bit prices will continue tb fabnsider Luminary Micro's ARM
controllers. They, like ST, Atmel and others, are darremarkable job of positioning
the ARM as the new century's 8051. Costs keep coming down;ddtimese parts are
available for under a buck.

| think we are close to that point already.

The industry shipped over a billion ARM processors in tle gaarter, giving nearly 4
billion in 2008:http://www.arm.com/news/23608.html

Microchip shipped just under a billion PICs in a year:
http://www.microchip.com/stellent/idcplg?ldcService=SS GPAGE&nodeld=2018&
mcparam=en534302

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

It's hard to get total annual figures for 8051 because tmeresntral "owner" of the
architecture keeping count, but it wouldn't surprise mehidd already been overtaken by
the ARM in terms of volumes.

>Excluding the hopefully short-term fallout from the ficzal

>mess currently rocking the world, I think not. "Trangistare

>free" is our mantra, but of course that's not retailg.

>Transistors do have a cost, both in dollars (weltrogents),

>size, and power consumption. With similar technolodpjt 8
>controllers will always outperform a larger CPU iedh categories.

While | totally agree that transistors aren't free diedsize always matters when it comes
to cost, I'm not convinced that this always works irotavof 8 bit processors. In terms of
power, particularly, the low end ARM processors masgigatperform an 8051 in terms
of performance/microwatt. | hesitate to use Dhrystman example, as it is very
obviously skewed towards 32-bit integer performance, buARM parts will give

around 30-40x the DMIPS/mW figure of a "low-power" 8051. Exagplication | have
looked at takes a lot less power on a 32-bit micro. Thatlsing to do with clever power
saving process technology, it's just because the rawezthi¢ is so much more

efficient.

Code density is the other thing that can skew the sysbsinin favour of a 32-bit
processor. We are taking carefully written 8051 assembeand replacing it with C
code running on an ARM and the memory footprint is typycadlich less on the ARM -
a single 16 bit instruction operating on 32 bits of datadcaa lot more work than two 8
bit instructions operating on 8 bits of data in a singleiaxdator. If the cost of your
device is dominated by the on-board flash or SRAM, theB+laih processor may well
work out more expensive just because it needs motefof hon-trivial applications.

As engineers, we like to do things as efficiently assgze and using a 32-bit micro to
watch a few inputs and toggle some output bits and drive s&ide keems
disproportionate. Moving from 8051 to Cortex-M3 sometimessdéke going from a
horse and cart to a sports car (when a model T woulldie the job just as well.) One of
the consequences of this is that there tends to be feajore creep when migrating - it
seems silly not do _something_ with all that spare pedoo®?

Criminal Coding

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Pierre-Jean Turpeau commented on my statement: “Cadetesa notoriously
ineffective way to uncover bugs. How many of us couple a¥ketests with code
coverage checks or inspections?"

In aerospace, the DO-178B (guideline for certifiable aviosiudsvare developments) ask
for requirement testing at the component level. Of agumsu need functional
requirements to limit ineffective structural testing.

The DO-178B also ask for 100% code coverage and MCDC (neudtqoidition decision
coverage) for the most critical parts of the software

Functional requirements at the component level (flilection, class or package
depending on your development strategy) are sometimesdewite and require a good
knowledge of how differentiate and separate the "whasp@nsibilities of the
component) and the "how" (the way it implements gsponsibilities).

Now based on that, in a requirement testing processd®®% MCDC code coverage
every branch shall be justified by a functional need.

This leads to two facts :
- You need highly tailored coding standards,
- You shouldn't write complex code unless you're happly @osst increase.

This means also that the simpler your code is, trex gatr'll get...

And it's something that is carefully checked by authordigsng the certification
process.

Chuck Royalty weighed in, too: | think the root of theiesss that your last sentence is
not true: Software is the only industry left on the ptaihat gets away with selling
known defective products.

Most software is not sold; it's leased (licensed)e tEmms of the lease disclaim
responsibility on the part of the author for almostrgiveng, and that's legally ok
because lease contracts are not subject to product ftteegkards. On the other hand, if
my car's brakes fail and it can be shown that thégddi(or my survivors) don't care if it
was software or a jammed piston. If a product thaittst® me doesn't work (for
appropriate values of "work") the manufacturer is liablesn more so if it causes injury.

So what about the software? My perception, and it thiak, is that the difference
between the terms and conditions offered for thenswé to the product manufacturer

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

and the liability of the manufacturer for product leg#écts of malfunction of that
software, is borne by the product manufacturer.

Seems like manufacturers that sell computer-based proaigits care a whole bunch
about that (and in fact | think they do, by and large).

Christoph Schmidt submitted: In your last muse you wrotetatyouinal coding by not
implementing checks for buffer overflows. In my dailgnk | have the impression that
approximately 80% of the severe bugs are caused by eiter buérflows or type
casts.

One thing | don't understand about the embedded softwale iwovhy we still use
programming languages that allow implementing erroneoustbatieasily. Using
languages like Ada makes it much more difficult or neanlgassible to write down such
crap. Even the best programmers forget from time to toneheck for overflow or add a
type cast which will turn into a very harmful constrastsoon as one of the types is
slightly changed. So why are we still using these languages?

First of all, it's quite easy to find embedded engineamslitar with C, other
programming languages are by far less known. And tight preghetdules normally
don't allow learning a new language.

Many embedded engineers only know C and maybe asserieleddn’t know about the
advantages of other languages. They think the shortcomir@@suwa God-given and the
way the world should be. |1 once had a discussion withad my former colleagues about
programming style, especially concerning the need farrggchecks and comments.
His point of view was just "We are firmware engine&¥ know what we are doing!"
(cited) This mindset, that programming has to be a difflow-level task and only a
bright mind must be able to understand the code makearlymmpossible to switch to a
clearer and easier to read language.

Most of the embedded code around there is most likelyanrih C, making it more
difficult to reuse or extend it using another languagé.a least with gnat/gcc, Ada code
can be linked against C code, so it's not impossible tcls¥a another programming
language step by step without replacing the complete codeabasee.

In many cases management does not know about other promggatanguages or they
find it too dangerous to switch the language: You don't get iezause you use C. But
if you introduced another language and the project failed aye hard pressed to deliver
a good explanation for the change.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Finally, a very common argument against higher-level laggsiare memory footprint
and execution time. | haven't tried it yet myself, bwbuld bet that C code containing
the same number of security checks as Ada would havly tlea same footprint and
speed.

[Sorry for always using Ada as comparison. It's the tarlguage suitable for embedded
programming | know apart from C ...]

In the last clause you wrote that the software industtlye only industry which can
afford to sell buggy products. Here | disagree. | once workddan ASIC containing
that many bugs that a colleague of mine replaced the YBS#8" with "BAL (Bug
Adaptation Layer)" in our diagrams. | can't remember hmamy bugs this damn thing
had but it was a lot.

Reuse

Bill Clare wrote: | wanted to weigh in on Roland Bettlseeuse comments. I've done a
number of Operating System abstraction layers in mgecgor, more appropriately, a
single one that I've ported a bunch of times; pSOSA&Works/C to Windows/C to
vxXWorks/C++ to Nucleus C to Green Hills Integrity C++..l've also seen articles on it
and the argument always offered is the one that Rolastirates below; portability. In
and of itself it's reason enough to do the abstractyer,|ldut what I've seen is that there
is another benefit that is perhaps just as importantertdinly is not as well
documented. With an abstraction layer, you can enforsieedebehavior, best practices,
design standards, etc. A couple of examples from nty pas

- ATI's Nucleus (at least the version we used...) requine application space to allocate
the memory used for the OS resource control blocks(sashkaphore, memory segment,
etc., whether with a local variable, off the heap, gisitlass member, etc.). My
abstraction layer hid these details from the end useurieg consistent management of
memory used for OS resources.

- vxWorks' mutual exclusion primitive provides a priority inversoption that we hard-
coded to "on" in our abstraction layer; we simply digmjpose this option in our
abstraction layer's API.

Chris Eddy wanted to add one thought and reinforce andathernewsletter points out
many specific techniques to make code more robust, but my begestence is that if
the code is well planned out, in great detail, it accahpt these things:

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

- The client has to specifically identify what they wand how they want it to
look/work. On paper.

- | have a road map up front that lets me scale thingsatd #m not trying to cross rivers
on alligators later.

- | can keep the customer firmly attached to a documethe inevitable changes come
along. All I have to do is double the space that is neextethdir revision 1, as it
inevitably grows by 60%.

| find that this keeps consistent code better than thafgpmethods.

And to reinforce Roland Bennett's points, | do love tstragt things as much as possible.
A customer recently asked me to go from an 8 bit procésso16 bitter (they actually
defined twice the features, | defined the part), and | methém move the 8 bit code over
to the 16 bit part in just a few days. | cannot say enobghtaabstraction. And #defines
for any 'flexible constant’, such as the definition ofilisecond, et cetera. Then when
my new processor has a different interrupt rate, Iglestn up the #defines, and | am off
and compiling.

| even take it as far as abstracting with compilensiind. My major accounts use
Microchip parts, and my code is prepared for both Hi-TechMierochip compilers. It
seems redundant, but it does two things for me:

- When one compiler shows a crack with a flaw, | gaitkly bail instead of waiting for
the "fix'.

- | can make use of a specific compilers' librariesgnvhfind out later that they want to
add 'USB' after the fact, and one compiler is better stggbdhan the other.

And furthermore... | inherit a lot of code, as a consulthoan actually identify their
age/era by their code (yup, learned to program on a PDP-sdhw such) or (yup.. I, J,
and K.. started out as a FORTRAN guy).

Early on the embedded processors were small and you pagkdits in a byte or word.
Now, with SOOO much space in there, it is actuallgisétbm a byte sharing standpoint
to spread out your flags over separate bytes. In the 16rtst pactually waste words. |
say this because | see share overlaps with interraiptadre often than | see 'out of
RAM space'.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Jobs!

Let me know if you're hiring firmware or embedded design&lo recruiters please, and
| reserve the right to edit ads to fit the format antdnts of this newsletter. Please keep it
to 100 words.

Horizon Hobby, Inc. is seeking a Senior Engineer - Etsdtfor work in the Proprietary
Product Development Department at our world headquart€ampaign, lllinois. Full
details are available online latttp://www.horizonhobby.com/Horizon/Careers.aspiis

is the ideal job for an RC hobbyist with experiencdernelopment of electronics used in
the consumer electronics/hobby arenas.

Insight Technology Incorporated, headquartered in LondopdgH is actively
searching for embedded software engineers. You will beoparsmall engineering team
in a challenging, fast-paced company where designs becaaeqgbion reality. Details
can be found awww.insighttechnology.com

Joke for the Week

From Paul Bennett:

Lawrence Livermore Laboratories has discovered theibst element yet known to
science.

The new element, Governmentium (Gv), has one neufassistant neutrons, 88
deputy neutrons, and 198 assistant deputy neutrons, giving itrait awass of 312.

These 312 particles are held together by forces callednsiondnich are surrounded by
vast quantities of lepton-like particles called peons.

Since Governmentium has no electrons, it is inemyewer, it can be detected, because it
impedes every reaction with which it comes into cantac¢iny amount of
Governmentium can cause a reaction that would nornaly fess than a second, to take
from 4 days to 4 years to complete.

Governmentium has a normal half-life of 2- 6 yearsloks not decay, but instead
undergoes a reorganization in which a portion of thetassiseutrons and deputy
neutrons exchange places. In fact, Governmentium's wmillsactually increase over

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

time, since each reorganization will cause more mai@bgcome neutrons, forming
isodopes.

This characteristic of morons promotion leads somenssis to believe that
Governmentium is formed whenever morons reach a dritazentration. This
hypothetical quantity is referred to as critical morass.

When catalysed with money, Governmentium becomes Adtratium, an element that
radiates just as much energy as Governmentium sihes ihalf as many peons but twice
as many morons

About The Embedded Muse

The Embedded Muse is an occasional newsletter senteaieh ley Jack Ganssle. Send
complaints, comments, and contributions to him at jag&@sle.com.

The Embedded Muse is supported by The Ganssle Group, whesemis to help
embedded folks get better products to market faster. Wiesaffeinars at your site
offering hard-hitting ideas - and action - you can take twonmprove firmware quality
and decrease development time. Contact us ahfo@ganssle.corfor more information.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

