

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 168
Editor: Jack Ganssle (jack@ganssle.com) November 4, 2008

You may redistribute this newsletter for noncommercial purposes. For commercial use
contact info@ganssle.com. Subscribe and unsubscribe info is at the end of this email.

EDITOR: Jack Ganssle, jack@ganssle.com

CONTENTS:
- Editor’s Notes
- Book Review
- The Failure of Reuse
- Job Descriptions
- Jobs!
- Joke for the Week
- About The Embedded Muse

*** *************

This issue of The Embedded Muse is sponsored by Netrino.

Is your firmware coding standard a hodge-podge of programmer preferences and
compromises? Most are.

By contrast, the just-published "Embedded C Coding Standard" was written from the
ground up to prevent bugs with each rule. To find out more or order your copy, visit
http://www.netrino.com/Coding-Standard-Muse .

*** *************

Editor’s Notes

Did you know it IS possible to create accurate schedules? Or that most projects consume
50% of the development time in debug and test, and that it’s not hard to slash that number
drastically? Or that we know how to manage the quantitative relationship between
complexity and bugs? Learn this and far more at my Better Firmware Faster class,
presented at YOUR facility. See http://www.ganssle.com/classes.htm .

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

switch(city){
case San Jose:
case Phoenix:
case Austin:

Are you in the San Jose, Phoenix or Austin areas? I ’ll present a public
version of the Better Firmware Faster class in San Jose on December 8,
Phoenix on December 10 and Austin on December 12. R egistration and
other info here: http://www.ganssle.com/classes.htm . You’ll earn 0.7
Continuing Education Units, learn a lot, and have m ore than a little
fun. Sign up before November 8 and receive a $50.00 discount.
}

Book Review

Duane Mattern received one of the free books in the Great Book Giveaway. He submitted
this review of Real-Time UML Workshop for Embedded Systems, by Bruce Powel
Douglass. Duane’s website is http://www.SampledSystems.com .

Thanks to The Ganssle Group for providing this book for free. The audience for the book
is “practicing professional software developers and the computer science major”. This
book was timely because I recently finished an embedded UML project using iLogix’s
Rhapsody Version 7.1.1. The book comes with a CDROM that includes a 3-month
license to Rhapsody along with Rhapsody UML projects of the examples covered in the
book. I already had access to Rhapsody so I did not install the Rhapsody software from
the CDROM.

I read the first chapter, which was a review of UML and UML diagrams. I skipped the
second chapter on “The Harmony Process”, (every organization has its own process).
The third chapter on Requirements was rather short, but contains some homework using a
traffic light and UAV examples. I was itching to get started, so I opened the first UAV
“Coyote” project in Rhapsody. I enabled all of the instances in the configuration and
attempted to generate the code. I got several errors: “actor is not a legal name”
(Rhapsody didn’t like the space in the name), and warnings about “non-behavioral ports”.
I jumped ahead to the last UAV “Coyote” example. I opened the project and used the
Rhapsody Model Checker on the default configuration. I got two error and many
warnings. Some of the errors were tool violations, such as “Multiple inheritance from
reactive classes is not supported”. The error “Multiple timeouts and duplicate triggers
from the same state” were caused by missing details. You can generate code for specific
packages. For example, I was able to look at the state machine code in the
PedestrianLight class in the Roadrunner traffic light example. But, it became obvious
that these models were not meant to execute.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The book has value if you are interested in using UML for requirements and system
architectural design. There is also a discussion of the detail design of the state machines.
You can do these things on a white board. In my opinion, the book missed a opportunity
to really shine by taking advantage of the companion CDROM and providing Rhapsody
models that were complete to the point of code compilation and execution.

The Failure of Reuse

Many commented on my rant about reuse in the last Muse. Michael Moedt wrote: To re-
use something, it really needs to be reliable. Some ways to achieve this:

 1. Automated [Unit] tests
This gives a degree of confidence in the module, as well as documentation on how it's
used. As well, when shared between projects you get confidence that you're not breaking
existing functionality.

 2. Good debugging support
This includes things like assertions - if the module to be reused has a bug (or not - if it
has bad input), it's good to know as soon as possible.

 3. Encapsulated - so that you can use it as the module you want it to be
 3b. Good Object-Oriented design (or the analogue in C)

 4. Good documentation
I especially like a few good diagrams; forget all the text that won't get read anyways. If
people don't know that a module exists and how to use it, and how it works when
debugging, they're much less likely to use it.

Also, I totally agree with the quote that something is "not reusable until it has been reused
three times". Perhaps then it will have gained some of the attributes above!

John Carter wrote: As one of the "custodians" of a single body of code that is currently
shipping 4 distinct products with a fifth on the way I guess I have the right to say
something about this.

 * Project managers are the poachers of internal software quality. They steal it to buy
"time to market" for their single pet project. Thus you need a proactive live "gamekeeper"
to guard the whole company’s interests. (That's been my role)

 * You need some Big Hard voices that insist on not rewriting, but refactoring.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

 * Unit Tests really really help. You can't unit test a Big Ball of Mud.
http://www.laputan.org/mud/ . Thus Unit Testing forces you to design better systems.

 * The notion of "Directory barriers" are a good clean way of defining variation points
between products.

A Directory barrier is a directory name that is one of a short list system wide of directory
names. A directory barrier must be explicitly listed for inclusion in a product and all other
directory names in that list are excluded from the product.

It is called a "barrier" because it stops the build system for a product from even looking
for files beyond (an inappropriate) one.

 * Cohesion Good, Coupling Bad. Live it.

 * Layer architectures are nice. They are simple to describe, simple to reuse, simple to
test in layers. But Modern systems are too complex to be designed and delivered in a
Layered Architecture.

However, an acyclic digraph architecture has all the simplifying advantages of a layered
system and can scale to huge systems.

See http://en.wikipedia.org/wiki/Directed_acyclic_graph if you don't know what an
acyclic digraph is. Nested sub and subsubsystems are a reuse disaster. Don't do that.
Think rather of branches in a acyclic digraph.

 * In a layered or DAG architecture the only excuse for an upward reference (a reference
to a symbol implemented in a higher layer) is an asynchronous event originating in a
lower layer. Otherwise use parameters and return values.

However, to enable reuse, the declaration and documentation for that symbol should
reside in the interface of the lower layer.

 * Small scale reuse fails when people don't write reusable software. Doh! If your
software is tightly coupled to everything else, untested, undocumented, then Doh! reuse
fails.

 * Your Nirvana of "pluck a module" SEI style component based software engineering
http://www.sei.cmu.edu/ is a bit like saying small scale software reuse obviously fails
because we write crappy software. Therefore we will reuse large chunks of crappy
software.... at least this approach has no obvious defects. :-)

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Somebody somewhere has to work damn hard at getting the quality up and the coupling
way down to make that work. (Refactoring the whole code base whilst the rest of the
team are pouring 20 man days / day into the repository is a Herculean "clean the Aegean
king's stables" type task.)

 * He who owns the build script has the reins of the architecture in his hands.

John later wrote more in response to a question about DAG: In a way it has been around
for decades...

For example many folk have said for ages... "Your header file should have all the
#include's it needs to compile by itself, Don't have cycles in your #include's."

I.e. You shouldn't have a.h #include "b.h", which #include's "c.h" which #include's "a.h"

These notions exist (in perhaps more words) in John Lakos's classic "Large Scale C++
Design" (see chapter on Levelization).

Alas, most embedded programmers have never read that book, thinking it is only for "Big
Iron" server folk.

Wakey Wakey Coffee Time! Since that book was written in 1991, Moore's Law has
gifted us a factor 128x. The size of our wee handheld embedded systems is now the same
size as the Big Iron programs of 1991.

The notion of a layered architecture has been around for ages. People like them.

Why? Because you can visualise them simply, you can build them up in layers, you can
test at each layer boundary.

If it is a strict layering, you can replace one layer with another implementation, (Think
ppp vs Ethernet under TCP/IP).

You can deploy the lower layers without having to drag along the upper layers if you
don't need them.

Of course many folk claim they have a "layered architecture", when all they have is
vague areas of a Big Ball of Mud which they think of as a layer.

The criteria for a true layered architecture is that symbols in an upper layer may only be
declared in terms of and be implemented using symbols declared in the same layer or
lower layer. (Where by symbol I mean, function, class, type, macro, variable, enum,
struct, ...)

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

And a strictly layered architecture is one in which symbols in an upper layer may only be
declared in terms of and be implemented using symbols declared in the same layer or the
layer directly below.

So now instead of calling a subsystem a "layer". Call it a node. If layer A depends on
lower layer B, say there is a directed edge from A to B. Then you have what
mathematicians have for centuries called a Directed Graph.

Then insist, like in a layered architecture, that nobody warps space (and minds) by
writing code where layer A is magically above AND below layer B. ie. It has no cycles.
ie. A Directed Acyclic Graph or DAG.

Hey Presto! You have generalized the notion of a Layered Architecture to something
scales to arbitrarily large systems, yet has all the same desirable properties.

How can I claim that it scales? Easy. You can always aggregate a collection of
subsystems into packages, so the packages become the new nodes, and the dependencies
between packages become the new edges. If you do this right, the new graph is also
acyclic.

Do I have an extraordinary proof of this extraordinary claim? Yes.

Go ahead and install any Debian based Linux system. Watch how the apt package
manager works. (Ubuntu 8.04 has 25000 available packages with 2400 installed on my
box. I love watching it do a distribution upgrade! It gives me cold shivers of delight that
something that complex just works!)

Gary Stringham said: I got to the point to where porting a driver for a given block on a
new chip only took me an hour to do. My code was highly reusable, but primarily
because I had collaborated with the hardware team. The way I did it was to work closely
with the hardware teams so that I didn't have to throw out the drivers for each spin of the
chip.

I do agree with the comment that it takes about three iterations to get it reusable, but once
techniques are learned and understood, it was not that difficult to use them in other
hardware drivers. Many of the techniques I developed were adopted and spread
throughout the driver writers in our lab.

I think that one key component that is required to develop reusable code is to have the
engineer stay in that job for at least three versions. When a different engineer is tasked
with porting code to the new platform, they are not familiar with the old and tend to hack

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

and slash.

Kim Fowler sent an article titled Lessons Learned on Five Large-Scale System
Developments by Nat Ozarin, IEEE Instrumentaiton & Measurement Magazine, Feb
2008, where he warns of excessive faith in code reuse. To quote: “New projects are often
estimated by assuming that existing software can be plugged in like a piece of hardware.
Unfortunately, experience has repeatedly shown that it’s better to follow a simple rule:
Don’t assume reuse makes sense unless you do your homework.” Then he goes on to cite
a system where reuse went awry when they discovered the reused code was totally
inadequate.

Tony Gray submitted this: I'm one of those software engineers who never drank the code
reuse Kool-aid, but I do take an occasional sip now and then. In my experience with
embedded systems, I've found that re-using module interfaces can be much more
productive than trying to reuse the code within the modules. For example, most of the
projects I've worked on have had a variety of sensor inputs. After my first two or three
projects I settled on a common way of handling sensors. First, I have digital and analog
I/O layers that get the raw data from the sensors. Then I have a sensor layer that converts
the raw digital and analog values into application values (temperature, pressure, distance,
etc.). The code within my analog I/O module or sensor module may change for a
particular project, but the function calls between layers (i.e., the architecture) remain the
same.

I think the reason this works is because designing and debugging architectural issues is
much more difficult than designing and debugging algorithms. Put another way, writing
a temperature conversion algorithm from scratch is much easier than creating a code
architecture from scratch.

Dave Kellogg wrote: When considering reuse, there are 3 levels of code:
Verbatim is code in the classic sense of reuse: The file is picked up and used with zero
changes. This is the ideal, and hopefully includes some documentation to ease the
deployment process.

Template code is source (often tables, etc) where the structure is used unchanged, but the
contents are customized for each project. Very often the machinery that processes
template code is itself verbatim code.

Custom code is just that custom to the project at hand.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Well-designed Template code qualifies as reused code. It avoids re-inventing
mechanisms, and supports (to some extent) a fill-in-the-blank approach to reuse.
Template coded often raises the level of solution from programming with code to
programming with data. An example of template code is an interpolation look-up table:
the structure of the table is reused, but the actual data may be custom. The engine that
processes the table is usually Verbatim code.

There are two sides to the reuse coin:
- Producing reusable code.
- Consuming reused code.

In a continually improving organization, both faces of reuse must be present and
increasing over time. Both types of reuse should be tracked with an appropriate metric.
If you don’t know how much reuse you have, you cant tell if you are getting better.

To increase reuse consumption, one of the check-list points during a code review should
be identifying areas where prior code should have been reused but was not. Because
reused code is already debugged, its use can accelerate a project schedule.

Reusable coded must be stored such that it is accessible, easily found, and readily
deployable. There must be confidence that code in the reuse library is bug-free.

Reused code can (and should) accumulate over time. It does not all need to be invented
all at one time. Hence, each successive project needs to bear only a portion of the burden
of producing more reusable code.
To increase reuse production, each project needs to provide a segment
of time (usually at the end of the project)t for reviewing and identifying reusable code
and packaging it as such. Some key points are:
- Small pieces of code are more readily reused. So files should be small, single-purposed,
and well focused. Of course, this is also good software engineering practice.
- The file is the basis of reuse. If a function is potentially reusable, pull it out into its own
file.
- Quality coding practices facilitate easier reuse. E.g., Low coupling and high cohesion;
Uniform coding standards.
- Refactoring is a key activity in making code reusable. (see
http://en.wikipedia.org/wiki/Refactoring)

As reuse is moved to higher and more abstract levels, having a well-designed architecture
with clearly-defined interfaces becomes significantly more important. This is a key step
in progressing to a product line type of software production.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Frequent correspondent Paul Bennett contributed: The real trick to getting easily re-
usable components is to follow some simple rules:-

* Components perform one function only (part of KISS principle).
* Components interfaces are well defined.
* Components are simply testable and certifiably correct.

On the basis of this I have some components of systems that have been re-used,
unchanged, in about 30 projects. They always go through re- certification within each
project to ensure the results of the testing have not changed from the previous run. The
re-use falls out quite naturally because the developer collects the necessary information
about each function during the certification process and, so long as the storage of the
code is arranged sensibly, it should be easy to retrieve for the next project that requires
that specific function.

The one area that is not usually easy for re-use is the HMI end of things as that can be
quite variable. Dealing with the lower levels of the system should be quite straight
forward and be the ripest for re-use of code as developers are always slower to change the
basic underlying hardware between projects.

Job Descriptions

Harold Teague had asked about job descriptions. Mike Barr had this to say: In the
previous Muse, one of your readers asked for detailed job descriptions for firmware
architect, firmware engineer, and firmware integration/systems engineer. That third title
sounds like it is probably specific to his employer. The others are more generalizable--
and related; to my mind, a firmware architect is simply a firmware engineer with
sufficient years behind her to have prior first-hand experience with each of the range of
design alternatives.

Although embedded software is deployed across a wide range of industries--including
verticals as diverse in needs as medical devices and consumer electronics--the required
knowledge, skills, and abilities are quite similar. Indeed the most knowledgeable
embedded software developers find their skills transferable between industries and often
move between them through their careers.

Here's how I would describe requirements when looking for a firmware engineer with ten
or more years of on-the-job experience.

Formal Education
* Formal education with degree in electrical engineering, computer engineering, or

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

computer science.
* Ideally, an undergraduate degree in EE and a master's degree in CS or CE.

Practical Skills
* Knows how to use an oscilloscope, multimeter, logic analyzer, and other lab equipment
to observe the proper functioning of software.
* Well acquainted with several version control systems.
* Comfortable reading a datasheet for a new processor or peripheral.
* An expert C programmer, well aware of its compiler-defined corner
cases and too-rarely-used features such as bitfields and the volatile keyword.
* Knowledgeable of at least one major RTOS API (e.g., VxWorks, uC/OS- II, etc.).

Demonstrated Capabilities
* Able to independently develop and test interrupt-driven drivers from scratch given only
limited (and sometimes erroneous) documentation of the specific peripheral and target
board.
* Able to design and implement multithreaded programs using an RTOS, without
resorting to the use of global variables.
* Able to ensure that critical deadlines will always be met through appropriate
hardware/software partitioning, use of interrupts, and prioritization of tasks.
* Able to design and implement embedded software completely without an RTOS as
appropriate.

Gary Stringham commented: While you are thinking about job roles within the firmware
domain, I would suggest additional roles and responsibilities outside the firmware
domain, that is, collaboration with your corresponding partners on the hardware side.

- Collaborate with the hardware team.
- Review and approve hardware design specifications.
- Be an ambassador from the firmware team to the hardware team.

I believe that one reason I was a successful firmware engineer was because of my
frequent and regular collaboration with the hardware team.

Jobs!

Let me know if you’re hiring firmware or embedded designers. No recruiters please, and
I reserve the right to edit ads to fit the format and intents of this newsletter. Please keep it
to 100 words.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Despite the downturn, embedded systems consultancy Netrino (http://www.netrino.com)
is still growing fast. The company currently has open positions for embedded software
developers as well as digital and analog electronics designers in many parts of the U.S.
The company's mix of development, consulting, and training work will entertain your
brain and makes for a collegial learning environment. If you may be interested, please
send your current resume to careers@netrino.com.

Joke for the Week

Phil Ouellette responded to Guillermo Zepeda-Lopez’s ideas about making software
lighter: Additional ideas to save weight:

- Convert all variables to float type

- Use only null or void pointers (what could weigh less than nothing)

- Use only virtual functions, constructors and destructors (as apposed to real ones that
must weigh something).

Not to be outdone, Tony Klein sent: He missed one thing we do to reduce code size,
which would also have the side effect of reducing weight: we just use a smaller font. Say
about 4 point. Makes the code really small.

Finally, John Johnson contributed this: I do not want take anything away from
Guillermo's humorous contribution but the intent of the effort seems to follow the
guidance of Colin Chapman, founder of Lotus Engineering, who urged his designers to
"Simplify, and add lightness". Lotus Engineering, of course, created the famed Lotus
sports car.

References to Colin Chapman and Lotus were found under
http://en.wikipedia.org/wiki/KISS_principle where I also noted the following:

Instruction creep and function creep are examples of failure to follow the KISS principle
in software development. This is known as "Creeping Featurism".

About The Embedded Muse

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

