VOLUME 1, NUMBER 1>> $3.95 (CANADA $4.95)
PREMIERE 1988 > A MILLER FREEMAN PUBLICATION

i ‘?'i":rg VA i

Algorithms for
Robot Motion

Control

Diagnosing
Memory Faults

. Finite State

. Machines in

| Practice

| Ray Duncan

. on Memory
¢ Emulators

| Debugging

| With or Without
' an IGE

T

Some development projects are so big
they can only be managed
with Teamwork.

Creating embedded software
systems can be a gigantic challenge.
But now there’s a way to manage
the process, lower costs, improve
productivity, and keep your team
competitive.

How? With a product called
Teamwork® for computer-aided soft-
ware engineering (CASE).

The Teamwork environment
is specifically designed for large scale,

complex systems development projects. ,

It provides modules for structured
analysis, real-time modeling, informa-
tion modeling, and structured design.
And it has an open data base that
allows you to interface your own
application tools.

Tearawork is a registered trademark of Cadre Technologies, Inc.

Teamwork is being used by

many leading companies like Grumman,

Rockwell, DuPont, Litton, HP, Delco,
Motorola, General Dynamics, and
Westinghouse for their most sophisti-
cated projects. And it’s helping many of
these users meet stringent DoD-2167
requirements.

No wonder Teamwork is the
number one workstation-based CASE
tool on the market. It was the first to
support real-time modeling. First to
support all workstation environments.
First with data base sharing for work-
station users. And it has the most
advanced user interface of any CASE
tool on the market, making it
extremely easy to learn and use.

Today, Teamwork runs on all
leading workstations, including Apollo,
DEC, Hewlett Packard, IBM and Sun.
There's even a PC member of Team-
work. So regardless of your hardware
preference—today or tomorrow—
Teamwork can work for you. And

grow with you.

You've heard all the claims
about productivity from CASE tool
vendors. Now talk to the people who
can deliver it today.

Teamwork, from Cadre. No
matter how big the challenge, it can
give your team the competitive edge.

Cadre Technologies, Inc.,

222 Richmond St., Providence, R1 02903
(401) 351-CASE CADRE

teamwork

Winning teams depend ont.

CIRCLE #201 ON READER SERVICE CARD

To talk with us in Europe: Cadre Technologies SA, Rue Juste Olivier 22, CH-1260 Nyon, Switzerland, tel. (41) {22) 62.22.51

SRR X

OPERATING SYSTEM

Speed without compromise.

QNX*DELIVERS QNX delivers the speed
| of a dedicated real-time executive as

| well as multi-tasking, integrated net-
working and a multi-user development
environment as rich and powerful

as UNIX.

SPEED The tightly coded QNX kernel
performs 3200 task switches/second
on an AT, with full pre-emptive
prioritized scheduling.

TASK COMMUNICATION QNXis
based on a message-passing archi-
tecture, radically more innovative than
PC-DOS, UNIX, or 0S/2. User tasks
and system tasks use the same
messaging interface. This results in

a single unified environment.

INTEGRATED NETWORKING On

the QNX network, any task can send
messages to any other task anywhere
on the network. This direct communi-
cation is not available on other net-
works. The resultant “feel” of the QNX
network is that of a homogeneous,
tightly connected array of computers,
rather than a collection of computing
islands strung together on a network
with comparatively limited functionality.
DEVELOPMENT ENVIRONMENT
QNX comes with a rich set of utilities
including a powerful full-screen editor,
C compiler, symbolic debugger and
multiple full-screen windows.

RUNTIME ENVIRONMENT QNX archi-
tecture is modular not monolithic. The

{ Multi-User 10 (32) serial terminals per PC (AT).
Multi-Tasking 84 (150) tasks per PC (AT).

Networking 2.5 Megabit token passing.
255 PC’s and/or AT’s per network.
10,000 tasks per network.
Thousands of users per network.
Real Time 3,200 task switches/sec (AT).
Message Fast intertask communication
Passing

between tasks on any machine.

C Compiler Standard Kernighan and Ritchie.
Flexibility Single PC, networked PC's,
single PC with terminals,
networked PC’s with terminals.
Mo central servers. Full sharing
of disks, devices and CPU’s.
PC-DOS runs as a QNX task.

From US $450.
Runtime pricing available.

PC-DOS
Cost

T4 7B

| ONXiea

system consists of a set of tasks that
provide services. Software developers
can easily write tasks that add services
to suit their specific application needs.

It is straightforward to write tasks that
interface to hardware through interrupts,
IO ports, DMA and dual-ported memory.

TECHNICAL SUPPORT Technical
support is provided free of charge, and
updates can be downloaded 24 hours/
day from our online BBS.

QNX is now installed at over 60,000
sites in North America and Europe for
manufacturing, process control, process
monitoring, point-of-sale and many
other applications.

Eliminate compromises in your real-
time applications. Call for details today.

- THE ONLY MULTI-USER, MULTI-TASKING, NETWORKING, REAL-TIME OPERATING SYSTEM FOR THE IBM PC, AT, PS/2,

THE HP VECTRA, AND COMPATIBLES.
T fb /

For further information or a free demonstration
diskette, please telephone (613) 591-0931.

Quantum Software Systems Ltd. - Kanata South Business Park « 175 Terrence Matthews Crescent - Kanata, Ontario, Canada « K2M 1W8

v CIRCLE #202 ON READER SERVICE CARD
504, PC. AT, XT wrd PS2.PC.D0S :

HP and Vecks

opay

A |ucomate the critical task of
TR
‘with easy to use-and highly flexible
tools from POLYTRON. You will
discover why thousands of program-
‘mers and managers at the leading
software, aerospace, manufacturing
and service companies use the
POLYTRON Version Control
Sptem (PVCS™) and PolyMake™
o contol the revisions and ver-
‘sions of source code and automate
the rebuilding process with une-
qualled power and precision. PVCS
and PolyMake can be used inde-
pendently or together,

&€ In terms of features, PVCS pro-
vides everything necessary to a
[arge multi-programmer project —
more than any other package
reviewed . . .all aspects of opera-
tion can be customized for specific
project needs. §9

7 PC Tech Journal
- Unmatched Capabilities

* Storage & B:etri'ev_alqu-‘ Mulriple

Revisions of Source & Binary Code

 * Maintenance of a Complete History
of Changes -

® Optional Merging of Simultaneous Changes
'® Release and Configuration Control
* » Project Activity Reports
";'.'f.Mamggﬂmt"Rmt‘s
* Control of Separate Lines of Development (Branching)
For Simple & Complex Projects
Auromatically rebuild and maintain simple or

~ highly complex projects consisting of thousands of

- modules, multiple directories & disks, and
, geogmphwalfy dispersed development locations.

Multiple Platform Development

I your projects are developed in a multiple

_ Opemting system environment, or will be ported
o run on another OS in the future, PVCS and
PolyMake will make your job easier. The PVCS ar-
chive files (logfiles) and the command interfaces
are exactly the same across opemting systems, The
same PolyMake makefiles can run unchanged on
the different operating systems.

Supports ANY Language

PVCS S maintains individual archives of all project
Omponents in your system — source code
- modules, data files, documentation and even ob-
ject code. 'Iht-“mf?ﬂdoclun]!mts" can 1132 lwnttm
in any language or multiple languages. PolyMake
is also language independent.

Call About Our OEM/VAR Strategic Alliance Program

MS-DOS 0S/2 Macintosh

ACCESS &
SECURITY

CHANGE &
RELEASE
CONTROL

Fast Retrieval of Revisions

PVCS uses “reverse delta storage” which saves disk

‘space and speeds retrieval of the latest versions of
-any module or an entire system. A delea is the ser
of differences between any revision and the previous
revision. Differences are automatically detecred
and stored when programmers “check in” a file.

A Practical Necessity for LANs

While important for single-programmer pmojects,
PVECS is absolutely essential for multiple-
progrmmmer projects and LAN pment
efforts. In a LAN environment, source code
‘modules are simply o easy, to change. Because any
‘change to any module can have major mmifica-
tions, coordinating and keeping a record of changes
wcily Pm'::lct- ;::dershcghn determine on a
e-by-module basis, which programmers can
-access or modify source files, libraries, object code
or other files. Levels of security can be tailored to
meet the needs of nearly every project. PVCS
works on all' major LANs and networks, including
networks with multiple computer types.

The Leading Change
Management System

The World's Best Selling
Build Utility

1%
£0A

=5

 WORLDWIDE:~

€€ PVCS has helped us maintain
nearly 90 programs and utilities.
Wichout it we would not have the
quality of our new release of
NetWare. 39

Jonathan Richey
Director of Product Development
Novell
Adopt PVCS & PolyMake
?i'_ou canobtain the bmeﬁt?[;fm
iguration. management for your
current project without distupti
development, regardless of how
long your project has been under
way. You can build PVCS archives
from revisions stored in your pre-
sent archives or simply adopt

~ PVCS from the current dare.
PolyMake Works With PVCS

PolyMake understands the structure of PVES
logfilesiand is able to correctly determine the time
and date of any module revision. This prevents un-
necessary operations that occur when the date and
time of the revision archive file itself is used as with
other Make utilities.

The Price AND Performance Leader

POLYTRON products are priced on a “Per User”
basis. The price per userdecreases as you add users.
8 MS-DOS, Macintosh MPW: Personal PVCS
(for single programmer projects) $149 for single
user. Corporate PVCS (has features for larper, more
complex projects including unlimited Tevels of
“branching”) $395 for single user. Network PVCS
(includes file locking and security features for LAN
use) $1,284 for 5 users. PolyMake $149. Network
PolyMake $484 for 5 users. 8 PVCS and PolyMake
are packaged together on OS/2, Sun UNIX and
VAX/VMS. m 0S/2: 5695 single user, $2,259 for
5 users. ™ Sun UNIX: $793 single user. $2,584 for
5 users. 8 VAX/VMS any : $995 single user.
$3,233 for 5 users. ® Call for price quotes.

#0572 & Sun UNIX versions avaifable Jare 1988

30 Day Money Back Guarantee

Ak oD M S Chece o O o

POLYTRON Corporation, 1700 NW 167th Place,
Beaverton, OR 97006. FAX (503) 6454576,
TELEX 325800 POLYTRON

VAX/VMS

Sun UNIX

Y
LR

VOL.1INO.1> PREMIERE 1988

EMBEDDED
SYSTEMS
PROGRAMMING

Table of Contents

FEATURES

28>Debugging
Embedded C

BY ROBIN KNOKE. Software bugs
come in countless types and flavors: com-
pile-time surprises and run-time anoma-
lies, type mismatches and portability prob-
lems, integration errors and macro mis-
takes. Here’s a guide tospotting them in all
their subtlety...and a defensive game plan
for writing bug-free C.

38>Animating
the Robot

BY ROBERT ZORICH. A reductionist
approach to motion-control algorithms
shows that even the most complex robot
activities can be described in terms of com-
binations of simple movements. Pseudo-
code examples show where to start.

ANIMATING THE ROBOT PAGE 38

FINITE STATE MACHINES PAGE 57

46>ROMing DOS Cs

BY RICK NARO. PCs provide a wealth
of development tools, but embedded sys-
tems require cross-compilers that lack bells
and whistles. Only if you're embedding a
PC chip can you have the best of both
worlds...and only if you know how to elimi-
nate reliance on the host’s operating
system.

57>Minimizing Finite
State Machines

BY IAN ASHDOWN. The deterministic
finite state machine is a valuable analysis
tool for designing real-time systems, but
the labor involved in maintaining hundreds
of complicated state diagrams offsets the
benefits. The techniques in this article help
reduce finite state machines to their mini-
mum equivalents.

REVIEWS

70>>Debugging Without ICE:
Simulators for the Intel 8051

74> Debugging With ICE: Debuggers
emulators

2| On the
md | COVET:
5 Debugging
takes place on
the cool plane
where sofiware
meets hardware.

Photograph by
David Bishop.

COLUMNS+
DEPARTMENTS

5> # include
Burning In

O Real-Time
Embedded Systems Programming

1 3> When in ROM
First Thoughts: Memory Emulators

19~ Programmer’s Sourcebook

Dynamic Interrupt Attachment

79> At the Bench
Walk, Trot, or Gallop: Diagnosing
Memory Faults

84 Chip of the Month
ISDN Made Simple: National Semicon-
ductor’s HPC16400

89 Advertiser Index

90> Embedded Marketplace

93 state of the Art
Rating Reference Manuals

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 3

q‘mﬂrmﬁ S R s A et S P R

Ty
e

;:. -
i
i
b
=

-

B I
477\
CEPE D S N

-

!

3930 Freedom Circld

© 1987 by Microtec Research, Inc. Mjj

Microtec Research has done a little genetic engineering on the
cross-software development industry. Sure, our quality and
customer support have become the industry cross-development
standard. And what other company has the confidence to
actually publish all fixes and ECOs for all products, for
everyone to see? But our real legacy to you, our customer, is
our commitment to providing the same cross-development
software from more host processors to more target
systems. From pSOS to VRTX to MS-DOS to UNIX to
VMS. From assembler to C to Pascal to Fortran. From
Motorola to Intel to Hitachi to AMD to Zilog. From IBM
to DEC to HP to Apollo to Sun. From crossassemblers
to cross compilers. From source debuggers running on
hosts that are simulating target systems to the advanced
in-circuit emulators from HP, TEK, Atron, Applied
Microsystems, Sophia, ZAX and Taiwan’s Microtek.
All of which means you can spend your valuable
time creating new silicon wizardry, rather than
learning new cross-development user interfaces.
Call Microtec at 800-551-5554 today
(408-733-2919 in California). So you can do
some genetic engineering on a competitor’s
physiology tomorrow.

=WA r:siincri

B50514 o 800-551-5554 or 408-733-2919 in California

f&f Microtec. The other companies mentioned own numerous registered trademarks.
) Adv. by TRBA

IHBITEH o)

D v 1 B

EDITOR
J.0. Hildebrand

CONSULTING TECHNICAL EDITOR
P.J. Plauger

MANAGING EDITOR
Linda 8. Comer

EDITORIAL ASSISTANT
Christine A.T. Dunn

CONTRIBUTING EDITORS
Bruce Bergman, Ray Duncan, Ernest L. Meyer

DESIGNER
Brian Day, Fisher & Day

EXECUTIVE EDITOR
Regina Starr Ridley

PUBLISHER
Donald Pazour

ASSOCIATE PUBLISHER
Ted Bahr, (415) 995-2431

EAST COAST ADVERTISING
ACCOUNT MANAGER
Jo Ben-Atar, (212) 683-9294

ADVERTISING SALES ASSISTANTS
Aobert Murphy. (415) 995-2475
Nancy J. Schnarr. (212) 683-9294

SALES/MARKETING ASSISTANT
Carol A. Frederico

ADVERTISING TRAFFIC
COORDINATORS
Dieter Tremp, Kathryn Bruin

DIRECTOR OF PRODUCTION
Andrew A. Mickus

DIRECTOR OF CIRCULATION
Wini D. Ragus

CIRCULATION MARKETING MANAGER
Jerry M. Okahe

ASSISTANT CIRCULATION
MARKETING MANAGER
Kathy L. Shay

(mFM:LLER FREEMAN publications

CHAIRMAN OF THE BOARD
Lord David A. Stevens

PRESIDENT
Marshall W. Freeman

VICE PRESIDENTS

Charles C. Baake Barbara M. Hampson
Leigh M. Freeman Thomas L. Kemp
Leonard E. Haas Wini D. Ragus

CORPORATE FINANCIAL MANAGER
Charles H. Benz
SECRETARY/TREASURER

Miller Freeman 111

ASSISTANT TREASURER

Douglas M. Denny

BPA Consumer Audit Membership
Applied for October 1988

include
by J.D. Hildebrand

Burning In

aunching a magazine, Ted Bahr and 1 have come to see, is not so different from

designing and building an embedded computer system. Many of the challenges

you face on the job, we have faced too. Many of the steps you take, we have taken.
Your concerns have become our concerns. You may not see many similarities between
programming and publishing, but similarities there are.

For us, requirements analysis began more than a year ago when readers of Miller
Freeman Publications’ Computer Language, UNIX Review, and other technical maga-
zines requested more articles about programming embedded microprocessor systems.
We investigated and agreed that there was a need for technical information about this
increasingly important specialty. Programming magazines covered the topic now and
then, and so did electronics magazines. No one devoted consistent monthly coverage to
real-time development.

From the analysis came a specification...and a resolve: we would publish 2 monthly
magazine and call it Embedded Systems Programming. We would meet the need with
the kinds of hards-on, authoritative, technically challenging articles that characterize
our other software development titles. And we would devote 100 percent of eachissue to
embedded systems development.

We got feedback along the way, surveying potential readers, studying other maga-
zines, attending trade shows, and interviewing industry experts. P.J. Plauger’s clear
vision and quiet ceriainty were invaluable, and the project took on new life when he
agreed to serve as consulting technical editor.

The implementation stage began last summer as we solicited articles, planned a
direct-mail campaign, and secured the services of an art direction firm. More than a
score of authors coded—whoops, wrote—submissions based on writers’ guidelines and
preliminary reader surveys. Like implementing an embedded system, launching a mag-
azine requires the specialized contributions of a variety of experts.

The past several weeks, as [write this in mid-October, have been devoted to debug-
ging. We've selected articles, a painful process; many that should have run will have to
wait for next issue’s consideration. We've edited text, commissioned art, and tested our
ad-sales story against market realities.

On October 27 we completed a prototype and turned it over to production. So while
this issue may be new to you, our involvement is over. We're moving on to issue two.

This cycle—analysis, specification, design, implementation, debugging, integration,
and delivery of a prototype—is as characteristic of our business as of yours. Our jobis to
help you do your job better. Drop us a line and let us know how we did with this first
effort.

\ 10433577, s pubtichest metSily by Miller Freesman Publicatons, 500 Howend Sireet. San Framosco. CA 410G {425, 3571821 Pease
drect adverfiang and ediornal ngures o this adiess SIBSCAPTION 241E o Te Unied Siatzs s $47 for 12 swoes. Camadiany Mesicas orders s b2 actompaned Dy Sayeet 0
LS funds with additional postage of $6 per yer. Al o g sibsoript ors mest e presaid 1 LS. fonds weith 2ckdSoral costage of $15 per yeor oy srface maior S p e iy
armai POSTMASTER: Al sbscrption crters, ngaries. and adiress changes shoud be sert b EMBEDDED SYSTEMS PROGRAMMIG, P41, Box 57716, Bovider, Coin. 805272716 For
quckest senvice, tziephone tof free 1-500-525-0543 e Colrad 1500 247 3300 Plesse allow four b swesis for chage o adivess o e cfiact Thrdcespsiapmad tlorg
Prane, M. EMBEDDED SYSTEMS PROGRANMIG 5 3 rageisrae &rarimary oweed by e pavent company, Wiy Freeman Petiicasions. Al meteral pobiished n EMBEDTED SYSTEMS
PROGRAMMING s copynight = 1928 by Miler Freeman PubicaSors. Xl mghes resenes. Reoronuction of materall aopearng m EMBETIORD) SYSTEMS PROCRAMMING s iorbddes wifoed
permisson. EMBFDDED SYSTEMS PROGRAMMING s 2cictie on i icke Som Uimersty Mcrofins interzional, 300 N Teeb P2, Anw Arinor, Mich, 23105 (3133 7834700

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 5

s

e

T Ay

8 S gy Ak

AT e T

TR

E
[

Available for Rent through

U.S. Instrument Rentals, Inc.

1-800-874-7123

LS. Headguarters: Sophia Systems, 3337 Kifer Road,

Santa Clara, CA 95051 (408) 733-1571

Corporate Headquarters: Sophia Systems Co., Ltd.

NS Bldg. 8F, 2-4-1, Nishishinjuku, Shinjuku-ku, Tokyo 160 03-348-7000 ;

211988 Sopkia Systems . M
Sophia Systems is a registered trademark of Sophia Systems. . =

ICE is & registered trademark of Intel Corporation. H

1 LT "
MDS it 3 registered trademark of Mohawk Data Science Corporatian. LT
IBM-PC/XT/XT are registered trademarks of International Business Corporation. i

In AWord...Pert

An MDS/ICE system designed
for power, growth, and ease of
operation.

Powerful debug commands aren't

worth much if they're too difficult
to use. We've designed the SA98 to
be fully compatible with IBM’s PC-AT
or XT. Now you can move quickly

SADB 5
Reaktime tracing of two through the debug process with
IO P e well-defined, detailed commands.

A Real Productivity Booster

Get your hands on an SA98 and
see how fast you can zero-in on
problems with full symbolic debug-
ging. You get compatibility with
industry standard symbol table
formats. And you can pick from

a large list of assemblers and

compilers.
XDB Quick Change Artistry
A powerful C source level cross .
debugger by Intermetrics. No more running up and down

iat, subesutio paramtac) command trees to change
i Wl oo or modify an emulator
statle 1ok sovusts condition. You can change i
bt s il commands without stop-
T At (rwstent); ping the emulator. Define
B oy Do i in-depth breakpoints. Call
5 ain sbort iy yolat o/ up help menus and files
i as you need them. And
| you can go from 8- to
ui:s u:zc uis nﬁu uﬁ';- uﬁv ui?u agu ugx msa eﬁn u:";alac Hgtliﬂ r): 32-bit microprocessors
i quickly.
‘ Powerful Commands
press {upaced Lo continue The SA98 command
structure is so powerful
and precise, comparing it to other
systems is tough on them. Let the 1
power of the SA98 go to work for ‘
you. Put it to work on your toughest
problems and break out of conven-

tional traps.

Dedicated to MDS/ICE
Sophia Systems is a pro in the MDS

Tt hranten e and ICE field. Founded and dedi-
el el e cated to supplying the most advanced

systems. Keeping the user in mind.

More Than Expected

Call for a demonstration, and see
| how well-defined solutions can

I make you more productive.

Call Toll-Free Today
1-800-824-9294 (USS.
| 1-800-824-6706 (CA

Sophia |
systems. |

| CIRCLE #205 ON READER SERVICE CARD

5
=
b

ZAX Presents The Best Way To

Develop, Program, Edit, Erase, Compile,

Assemble, Debug And Compute

f you're dissatisfied with the for-
midahle task of trying to assemble
a suitable microprocessor development

system from different vendors, take heart.

Now with a simple phone call, you can
receive complete support for all your
development equipment needs from one
supplier—ZAX Corporation!

WHY DOES SINGLE-VENDOR SUPPORT
MAKE SENSE?

When you turn your development needs
over to ZAX, you’re assured that all
hardware and software tools were con-
ceived, designed and tested io work
together reliably and efficiently. Both
with your existing system or as a coni-

pletely independent development system.

That coordination results in a complete
turnkey development system instead of
a collection of unmatched components.
(Surprising as it seems, this modular
approach to design tools still costs less
than dedicated systems, yet offers more
flexibility!) Alse, by providing a package
instead of a puzzle, you end up consery:

Alang with everything else shawn here, we offer emulatars for the following processors: B086/88
6808, 68000, 68020, 6GBO3D. And yes, more are on the way.

ing another important resource: Time. One
phone call. One purchase order. One solid
commitment. No headaches.

WHAT TYPE OF HARDWARE
AND SOFTWARE TOOLS ARE
WE TALKING ABOUT?

ZAX ofiers you a choice of two different
powerful emulation systems with the ICD-
and ERX-series emulators. Both can he
interfaced to a variety of hosts (from PC
to mainframe) and hoth offer support for
a wide variety of processors. There’s also
our universal interface chassis, the 300i,
that’s capable of linking our emulators

to virtually all host computers and operat-
ing systems. And speaking of computers,
ZAX can provide you with a model of its
own—ithe BOX-ER.

ZAX can also furnish an array of useful
support hardware, such as a line of PLD/
EPROM programmers and erasers, Our
ZP-series high-speed programmers inter-
face to your PC for a powerful combina-
tion, And the ZE-series line of EPROM
erasers include everything from an indus-

CIRCLE #206 ON READER SERVICE CARD

trial-class, 200-chip model to the world’s
fastest eraser, the 5-second Quick-E Il

Chances are a hroad choice of develop-
ment software is paramount to your abil-
ity to work in a familiar environment. If
so, ZAX is still your best source. We offer
“C,” Pascal, Ada, PL/M and Fortran com-
pliers, assemblers/loaders, symbolic
debuggers, source-level debuggers, and
helpful menu-driven communications pro-
grams to get you up and running, fast.

Call ZAX today and get single-vendor
support working for YOU! Our toll-free
number is 1-800-421-0982 (800-233-
9817 in CA). ZAX Corporation. 2572

White Road, Irvine, California, 92714.

In Europe, call United Kingdom: D628 476 741,
West Germany: 02162-3798-0, France;
(03) 956-8142, Italy: (02) 688-2141,

ZN\X

Zax Corporation

, 186/188, 80286, 80386, 8085, 8048, V20/30, V40/50, 6301, 64180,

§ -:'

MAIL
TODAY!

No Risk!
No Obligation!

100% Money-Back
Guarantee!

Save 21%!

FREE TRIAL!

Charter Subscription Certificate

B ey L]

SEND Pleasestart sending these hands-on technical updates on

ME embedded systems programming. I may examine my first issue <§-f‘

with no obligation. If I decide to subscribe, I save $10. If I decide e

PROOF! notto,1 simply write “cancel” on my invoice and owe nothing. £

$37* 5

1-Year (12 Issues) Charter Subseription 47 ’

Name, 5

Company

Address. M/S
City, State Zip

* 21% discount off regular subscription price.
Please allow up to six weeks for delivery of the first issue. Foreign orders must be prepaid in U.S. funds. Canadiar/
Mexican orders add $6 per year for surface mail. All other foreign orders add $15 per year for surface mail or $40 for

air mail. 48Ls

FREE TRIAL!

Charter Subscription Certificate

SEN Please start sending these hands-on technical updates on
ME embedded systems programming. I may examine my first issue
with no obligation. If I decide to subscribe, I save $10. If I decide
PROOF I not to, I simply write “cancel” on my invoice and owe nothing.

1-Year (12 Issues) Charter Subscription $47 =7
Name

Company.

Address M/S
City, State Zip.

* 21% discount off regular subscription price.
Please allow up to six weeks for delivery of the first issue. Foreign orders must be prepaid in U.S. funds. Canadian/
Mexican orders add $6 per year for surface mail. All other foreign orders add $15 per year for surface mail or $40 for

air mail. 4815

" FREE TRIAL!

Charter Subscription Certificate

SEMND Please start sending these hands-on technical updates on
ME embedded systems programming. I may examine my first issue
with no obligation. If I decide to subscribe, I save $10. If I decide
PR@@F“ not to, I simply write “cancel” on my invoice and owe nothing.

$37*
1-Year (12 Issues) Charter Subscription a7
Name
Company
Address M/S
City, State Zip.

* 21% discount off regular subscription price. . ‘
Please allow up to six weeks for delivery of the first issue. Foreign orders must be prepaid in 11.S. funds. Canadian’
Mexican orders add $6 per year for surface mail. All other foreign orders add $15 per year for surface mail or $40 for

- air mail. 4as

NO POSTAGE
LAT‘O NAEGER NECESSARY ‘
CIRCY n_e\SSU IF MAILED
eNTION 0 No-RisK d“sw““" IN THE :
T o s‘o'?:;wm SubsctDe! UNITED STATES :
3 |
I |
BUSINESS REPLY MAIL ——
First Class Permit No. 1286 Boulder Colorado | !
Postage will be paid by the addressee I !
] I
s t .g DN
g R « MTM O G,, !
Miller Freeman Pubhcatlons
P.O.Box 52716
Boulder, CO 80321-2716
1
!
”IlllIIIIIII”IIIllIIII”IIIIIllIIIIlIIlI“ll”llll :
1
NO POSTAGE !
LATIONM p;GE“ | ' | l | NECESSARY !
CVU! PLE 155U IF MAILED ;
ﬂENT\O“ ag “0”5 A:sco““'" INTHE !
,\dstoﬁ‘“‘" UNITED STATES ‘
]
]
BUSINESS REPLY MAIL E———
First Class Permit No. 1286 Boulder Colorado I
Postage will be paid by the addressee R i
T
|
i G R a MM | N
Miller Freeman Publications I
P.0.Box 52716 }
Boulder, CO 80321-2716 !
|
IIIIII“IIIII”IIIIlllll”Illl”lllllll“l”ll”llll i
NO POSTAGE
ONM ANAGER | NECESSARY
oN QRCULATY SRE S5 A IF MAILED
NI ceives ﬁw jscou INTHE
5“"‘:}'50 charter S UNITED STATES
.|
]
BUSINESS REPLY MAIL ——
First Class Permit No. 1286 Boulder Colorado L] :
Postage will be paid by the addressee I '
I
I
|
Miller Freeman Publications

P.0.Box 52716
Boulder, CO 80321-2716

TITYIT T |

by P.J. Plauger

Embedded Systems Programming

hen J.D. Hildebrand told me
w of his plan to produce this new

magazine, my immediate re-
actions were, in order:

Oh boy!

What can I do to help?

Can I please write the editorial intro-
duction to the first issue?

You see, the realization has been
growing within me for some time that
programming for embedded systems was
an important but sadly neglected disci-
pline. I found myself lecturing more and
more on the topic. My stack of essays and
tutorials on the subject was beginning to
teeter. My commercial interests in pro-
ducing support software were drifting
ever more in that direction. The time was
clearly overripe to do something.

WNevertheless, I don’t think to address
a problem by starting a new magazine.
The folks at Miller Freeman Publica-
tions do. In case you don’t know, these are
the people who bring you Computer Lan-
guage, UNIX Review, Al Expert, and
Database Programming & Design—all
quality publications in a marketplace not
always known for quality, accuracy, or in-
tegrity. We programmers can count our-
selves lucky that someone went to the
trouble of starting a new magazine aimed
at embedded systems programming.

Just what is embedded systems pro-
gramming? Let’s dissect the phrase a
word at a time.

EMBEDDED

The Oxford English Dictionary defines
- embed as “to fix firmly in a surrounding
mass of some solid material.” I’'m sure
that’s how you feel at work sometimes,
but that’s not the basis for the use of em-
bedded in this context. Rather, the word
is intended to connote that the computer
you’re programming is stuck in the mid-
dle of something else. It’s not a general-
purpose computer that you can use torun
an arbitrary program, but one dedicated
to performing a particular task.

Ehist
Embedded
applications are
microprocessors
wired into the
electronics of a
host of varied
thingamajigs.

A typical embedded application is a
microprocessor wired into the electronics
of some thingamajig. The micro and its
firmware take the place of a fistful of
hard-wired logic gates and flip-flops. It
may even replace cams, cogs, springs,
carburetors, or other bits of mechanical
logic. Your microwave oven doubtless
contains an embedded computer. Your
new car may contain several. Today’s
laboratory instruments, weapon systems,
and yuppie stereos are all built around
embedded computers.

An embedded computer need not,
however, be either small or intrinsically
special-purpose. AT&T has for years
used UNIX systems to monitor and con-
trol its extensive long-distance trunk net-
work. Even if you can log on to one of
those systems and compile new C pro-
grams or play Hunt the Wumpus, it’s still
an embedded system. Major airline res-
ervation systems use large IBM main-
frames that look for all the world like
your standard-issue giant computer cen-
ters. However, they're still embedded
systems.

Does this mean, then, that the term
embedded is unselective? Not at all.
‘Whatever their size, embedded computer
systems have special requirements:

® An embedded system typically has
one or more special interfaces to nonstan-
dard devices or to devices used in non-
standard ways.

® An embedded system almost al-
ways has to respond to external events in
a timely fashion. Often the performance
requirements press the state of the art,
and failure to perform adequately can
cause serious harm or loss.

E An embedded system frequently
consists of two or more processors that
must be synchronized.

These requirements are either nonex-
istent or far less important for general-
purpose systems. So you can read embed-
ded to mean both “not for general-
purpose computing” and “dedicated to
an application with special require-
ments.” Either way, you as a program-
mer or system designer must learn some
special skills. You won’t necessarily pick
up these skills writing programs that run
under DOS, UNIX, or MVS.

SYSTEMS

Going back to the OED, we find that a
system is “an organized or connected
group of objects.” A later definition is
more to the point: “a group, set, or aggre-
gate of things, natural or artificial, form-
ing a connected or complex whole.”

You need a whole system tosupportan
embedded application. That system con-
tains most or all of the parts of a general-
purpose computer, to be sure. It also con-
tains special transducers, interface chips,
and power supplies. On the abstract side
of the house, an embedded system often
needs special timing, synchronizing, and
error-recovery software. Someone has to
understand how all the parts of the sys-
tem play together and how to balance
hardware, software, price, performance,
and reliability considerations.

It would be very easy to concentrate
exclusively on the CPU and memory
chips that constitute an embedded com-
puter. That’s the part of an embedded

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 9

— .

system that most closely resembles the
more familiar environment provided by a
host gperating system. That’s the part a
programmer of embedded systems often
finds the most comfortable. But often it’s
the programmer who's the “someone”
bringing together knowledge of the var-
ious system components. If you're that
someone, rather than just another tame
programmer, you'll be better at your pro-
fession and worth more on the job.

Plenty of publications out there tell
you about the latest in computer hard-
ware and support electronics. Those pub-
lications tend to take for granted that you
know what to do with the latest gadgets.
If they discuss programming issues at all,
they tend to present artificially small ex-
amples. Or they present code samples
that are laughably inadequate in real-
world embedded applications. In short,
hardware-oriented publications give
short shrift to the software components of
an embedded system.

Also, plenty of publications out there
tell you about the latest in computer pro-
gramming languages and support soft-
ware. Those publications tend to take for
granted that you know what to do with
the latest software. If they discuss hard-
ware at all, they tend to present gadgets
as black boxes that are as easy touse asa
library subroutine. Or they present cir-
cuits that are laughably inadequate in
real-world embedded applications. In
short, software-oriented publications
give short shrift to the hardware compo-
nents of an embedded system.

Embedded Systems Programming
assumes that you'll have tough decisions
tomake regarding both the hardware and
the software you bring together to make
an embedded application. It strives to
teach electronic engineers enough about
modern programming and software engi-
neers enough about modern electronic
engineering that both can design safe, re-
liable, cost-effective systems. It aims to
fill the gaps where pulses meet bits and
blueprints meet data-flow diagrams.

PROGRAMMING

My edition of the OED doesn’t include
the modern supplement. It still thinks a
computer is a person who does calcula-
tions for a bank or an insurance company.
Nevertheless, I applaud its definition of
program as “to scheme or plan definite-
ly.” That sounds like what I've been doing

Programming is
where the action is.
That’s where you
make up for the
inadequacies that
creep into hardware
designs. That’s
where you tailor the
system to the

application.

for a living for the past 25-odd years.

Even though an embedded system de-
sign must be concerned with both hard-
ware and software, in many ways soft-
ware is the more imporiant concern.
Software is the glue that holds all the
parts together and makes them behave
like a “connected group of objects.” Soft-
ware is the last malleable component you
can shape to make a system meet the
specs before you ship it. Software is often
the repository of system complexity and
hence the limiting factor in what you can
do with the system.

This is not to say that the hardware is
unimportant. Far from it. Were it not for
the ecxistence of computer hardware
that’s speedy, accurate, and ever more in-
expensive, computer science would be a
discipline of interest to just a handful of
theoretical mathematicians. Indeed, one
of the reasons we can worry less and less
about the hardware components of a sys-
tem is that the hardware designers and
implementers have done their jobs so
well. More and more, constructing em-
bedded systems consists of pasting to-
gether off-the-shelf components and get-
ting the application-specific part of the
software right.

You can view the situation in either
light. The fact remains, programming is
where the action is. That’s where you
make up for any inadequacies in hard-
ware design. That’s where you tailor the

10 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

system to the specific application. That’s
where you provide much of the value add-
ed in many of the sophisticated products
turned out today.

So this magazine unabashedly calls it-
self Embedded Systems Programming.
It confines itself to computer sysiems
used in embedded applications. It deals
with entire systems and how hardware
and software components interact. It ad-
dresses the peculiar needs of the pro-
grammer of embedded systems.

That’s the charter. The modus oper-
andi is:

Present columns and articles aimed .

at practicing engineers and program-
mers. The focus is at all times practical.

® Review products, services, books,
and training aids. You won’t find articles
that are simply self-serving promotionals
for commercial products.

® Provide timely information on new
technology and trends. You can expect
more than just press releases and product
announcements.

There's clearly much information and
technology that we can share about pro-
gramming embedded systems. If you
have any personal contributions that you
think fit the theme of this magazine,
please submit them for consideration.

As for me, I've enjoyed my early in-
volvement with Embedded Systems Pro-
gramming. I plan to contribute to the edi-
torial content of this magazine in various
ways over the coming months as long as
the editors tolerate my offerings. It’s been
a pure pleasure to read the numerous
technical contributions that have already

‘entered the pipeline. You'll get to share

that pleasure in the next few issues.

I've learned a lot about a field I
thought I knew well. I expect many of you
will too. Embedded Systems Program-
ming is the best forum for promoting an
important technical discipline that has
come along in some time. Please help
make it a success.

P.J. Plauger is the consulting technical
editor of Embedded Systems Program-
ming. He has coauthored several popu-
lar textbooks with Brian Kernighan, in-
cluding The Elements of Programming
Style and Software Tools in Pascal.
Plauger serves as secretary of X3J1 1, the
ANSI Cstandardization committee, and
as president of Whitesmiths, Lid.

OASYS Solves the
Cross-Development Puzzle

% Every Piece is in Place

b Oasys offers the complete development solution

with 68881 and 68851 Support
Fast, Highly Optimized and Available

68030 /20/00 Development Tools with 68881 and 68851 Support

|
’& Cross and Native Compilers & Multi-Window Cross Debugger "

e C o C+4++ @ Pascal » FORTRAN

& Macro Assembler/Linkers & Landtage sensitive Edilors
for 68000/10/20/30
= & C Run-time Analysis

¢ 68000/10/20 Simulator and Profiling Tools

& Real-Time Operating & Communications/
System Kernels Download Utilities

Plus over 120 other software development tools including:

e QOther Complete Tool-Kits: TOOL-KITS
—_ 80386 AVAILABLE FOR: OASYS SERVICES:
— Microsoft Cross C for 8086/286 VAX/VMS/ULTRIX = New ports easily
:) San arranged
¢ C ++ : Object-Oriented C ++ Tool-Kit: APOLLO
— Designer C ++ GOULD o OFEM, site and
— C++ Class Libraries for User Interface fgﬁ gg corporate licensing
Development 3 - :
S WindowsIMS Windows SupHiE ... MANY MORE Training available

— Language Sensitive Editor
(C++ /[EMACS)
Let us help you solve your puzzie

A =
——
230 Second Avenue, Waltham, MA 02154 (617) 890-7889
Trademarks are acknowle DEC. UniPress Seftware. Inc.. Microsoft ' CIRCLE #207 ON READER SERVICE CARD

ATET. CaseTools. Inc.. Gl e, Lid,. and XEL, Inc

THE ORIGINAL IN-CIRCUIT
EMULATOR FROM INTEL
EMULATES ITS COPYCATS
IN ONE RESPECT . .owimpomr

emulator sets the standard for speed,
reliability, productivity and
performance.

Our MCS®-51 emulators and high
level language compilers can be run
on IBM PC XT, AT or PS/2*
computers or compatibles and offer
full symbolic debugging.

The original in-circuit emulators
were developed by Intel in 1975, so
no one can match our wide
experience in this technology, or in
helping customers be successful in
their design. Since you've already
decided on an Intel MCS-51
microcontroller, it makes sense for
you to buy your emulator and
software from the same reliable
company with the resources to help
you at every phase of your design.

In fact, in all your development
work, you'll find that no one can
emulate Intel.

Get in touch with your local Intel
sales office or authorized distributor
to get your hands on the affordable
original from Intel. Call
1-800-548-4725 and ask for
Literature Department BAOO.

*[BM PC XT, AT and PS/2 are trademarks of International Business Machines Corp. ICE, MCS, and Intel are trademarks of Intel Corp. ©1988.

CIRCLE #208 ON READER SERVICE CARD

by Ray Duncan

First Thoughts: Memory Emulators

reetings! You are fortunate to be
G present at the birth of a new mag-

azine and a new column. Like all
births, it’s an event rich with hope and
potential. I think we shall have many
months of growing and coming to know
one another. But first, allow me to intro-
duce myself.

T've been programming—and writing
about—microcomputers since the days
of Imsai and Altair. When I got my first
Imsai 8080 with 8 kbytes of RAM, a 70-
kbyte ICOM floppy disk, and a Teletype
ASR 33, I was euphoric. Up until then, I
had been programming on minicom-
puters where [actually had to share the
CPU and disk drives with other users!
Since then I've worked with the 8080, Z-
80, 6502, 1802, 80x86 family, 680x0
family, 8096/97, 8051/31, 6303, V25,
68HCI11, HD64180, and TMS34010.

All these chips are fun (with the ex-
ception of the 1802 and 8051 /31, which
can only be described as endurable). The
newer microcontrollers are impressive.
The Intel 8096/97, for example, requires
only a handful of support components but
can blow many of the general-purpose
microprocessors of a few years ago right
out of the water. The chip is also quite
pleasant to program at the assembly lev-
el; it has a nice, regular instruction set
without any weird gaps (like the missing
DEC DPTR on the 8051/31).

During the coming months, this col-
umn will cover evervthing from program-
ming tools to new chips to assembly-
language implementations of useful algo-
rithms. (Your suggestions for column
topics are welcome.) If I find a particular
product especially useful (or especially
dreadful) in the course of my work, you’ll
hear about it. You can choose to exploit or
ignore such anecdotal material.

DOWN TO BUSINESS

Let’s take a quick look at an as-vyet little-
known class of products for embedded
systems development that are truly in-

In its simplest form,
a ROM/RAM
emulatoris a

small circuit board
with some static
RAM, a handful of
support chips,

and a pair of
connectors: one to
the host and

valuable: the so-called ROM /RAM sim-
ulators or emulators (neither term is par-
ticularly accurate). Though conceptually
quite simple, these products can save an
astonishing amount of time. And since
they cost only a few hundred dollars, they
pay for themselves almost immediately.
In its simplest form, a ROM/RAM
emulator is a small printed circuit board
with some static RAM, a few support
chips, and two connectors. The serial- or
parallel-port connector goes to an IBM
PC; the ribbon cable and DIP connector
go to the ROM or RAM socket on a sin-
gle-board computer. Simple emulators
draw the power they need from the target
system’s socket, while the more elaborate
ones may need an external power supply.
The ROM/RAM emulator is essen-
tially a chunk of dual-ported RAM that
both the PC and target system can access.

Figure 1

] Here's a typical
one to the ROM/RAM oneuistor
i . As far as the
ROM or RAM socket etk
_ knows, the
on a single-hoard emulator is an
EPROM.
computer.
TR oos
Bl
E RIM/RAM Emslator E:

Entedded Systes
Prototype or
Single-Board Computer

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 13

When developing a ROMable applica-
tion using a ROM /RAM emulator, you
assemble or compile the code on the PC,
then use a small utility program to load
the executable image through the serial
or parallel port into the emulator. The
executable image appears in the target
system’s memory space as if ROM or
EPROM had been plugged in (Figure 1).

The primary advantage of using a
ROM/RAM emulator should be obvi-
ous. The need for unplugging, erasing, re-
burning, and resocketing EPROMs is
eliminated, speeding up the edit-compile-
test cycle enormously. Each time you
make a change to your source code, you
can run the improved code on the target
within seconds after the assembly or com-
pile rather than five or 10 minutes later.
There’s noneed to burnan EPROM until
the application has been exhaustively
tested and polished.

A more subtle effect, one that you
won’t notice until you've used a ROM/
RAM emulator for a few months, is that
the quality of your code really improves.
The turnaround time and the hassle of
testing new code are so reduced that
you’ll feel free to optimize and even dras-
tically restructure your code, things you
never would have bothered with before.

For the last few months I've been us-
ing a second-generation ROM/RAM
emulator called the SRS-63 (Figure 2).
As far as I know, it’s the first of its kind.
Designed and built by my friend Klaus
Flesch, who runs a hardware/software
consulting firm in West Germany, the
SRS-63 has a serial interface to the PC.
It can emulatea ROM or RAM device of
anywhere from 8 to 64 kbytes for the tar-
get system and can even (with a special
cable) emulate a pair of memory devices
for 16-bit micros such as the 8096/97.

The SRS-63 represents a significant
advance over first-generation ROM/
RAM simulators because it’s an intelli-

AR
Figure 2

The SRS-63 is a second-generation
ROM/RAM emulator that contains a 6303
processor and an interactive monitor
program that lets you inspect and modify
the target’s memory while the system is
running.

The primary
advantage of using
an emulator should
be obvious. The
need for unplugging,
erasing, reburning,
and resocketing
EPROMs is
eliminated,
speeding up the
edit-compile-test
cycle enormously.
There’s no need to
burn a ROM until the
application has been
tested and polished.

gent peripheral. Not only does it contain
64 kbytes of emulation memory for the
target system, it contains a 6303 micro-
processor with its own ROM, RAM, and
interactive monitor program. This moni-
tor allows you to inspect and modify the
target’s memory while the target system
is running,.

When an 8-, 16-, or 32-kbyte device is
being emulated, the emulation memory
can be divided into pages containing dif-
ferent versions of the same program. A
modified executable image can also be
uploaded to the PC and saved in a file.

INIT

Since I’'m cold-booting this column, I've
not made any attempt to track down oth-
er manufacturers of ROM/RAM emu-
lators, although I know that several exist
because I've stumbled across them at
Comdex and other trade shows. Com-
panies that build and sell these devices
are invited to contact me care of Embed-
ded Systems Programming. I'll print a
list of available products in a future issue.

Ray Duncan has written columns for Dr.
Dobb’s Journal, Softalk/PC, and PC
Magazine. He's the author of Advanced
MS-DOS Programming (Redmond,
Wash.: Microsoft Press, 1986) and Ad-
vanced OS/2 (Microsoft Press, 1989).
He owns Laboratory Microsystems Inc.,
Marina del Rey, Calif., a software house
specializing in Forth interpreters and
compilers.

14 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

s Ada cross-compilers
Aflgsc%you thereinno tilrjne.

It’s time you knew that
Alsys, the premier Ada company,
offers a range of powerful and
flexible cross-compilers for all
microprocessors in the Motorola
MC680X0 and Intel i80X86
families* to get your applications
up and running fast.

Part of the reason for this
speed are powerful development
tools such as AdaProbe, a source
level debugger and program
viewer providing facilities to
address both the execution prop-
erties of a program and its static
structuref. n ?d(!ition, there’s
support for placing program
componentspinto ESM and the
Alsys Multi-Library Environ-
ment allowing program units to
be shared among libraries for
team programming.

ith Alsys’ fuﬁline of

cross-compilers you’ll discover
impressive flexibility and power.
There’s a configurable run-time
system giving you full control
over tasks, interrupts and all
components of your application.
The debugger and transfer utility
are configurable. Best of all, it’s
easy to take advantage of all this

wer because there are only a

ew files to modify.

When you need to get from
here to there without getting lost
somewhere in between, use a
cross-compiler that knows the
shortest route.

sy

Check boxes lhm?ueres:r_\;u:i R ~ EsPiss
. [Please send me a Technical Summary on the Motorola MCEe80X0
1 Pleasc scnd me & Technical S he Intel iBOX86 cross-compilers.
*The 680X0 cross-compilers are hosted on VAX. SUN 3, Apollo, HP 9000/ | [Please sem i ey !. Sk i:n‘rzs:-c:\)mpa fis
300, IBM PS,2. PC AT and Compaq 26 The Iniel croce compiics b hosted. | = Please send me 2 copy of your “Many Facets of Gualicy” brockiee.
on the IBM PC ATand Compaq 386. Name
» US: 32 Mai z / 54 Tel: 003
Ei:};g.é% Alsys, 1432 Main St.. Waltham. MA 02154 Tel: (617) 890-0050 Address

In the UK- Alsys, Partridge House, Newtown Road, Henley-on-Thames, City State “p
o G T T T o1 ya5000 o™ Road. Henley-on Thames AR B :

,[i'_ﬁ;r‘gr%lﬂ‘f%fg\llssﬁfg_{\venuc de Versailles, 78170 La Celle St. Cloud. France Mail 10: Alsys, 1452 Main St., Waltham, M:__U'_"li-l

CIRCLE #209 ON READER SERVICE CARD

i S Y

TR ===

are designed for any language produc-
ing complete Intel OMF information.
A PC-based, incircuit source level
' ., debugger and simulator are closely cou-

[

J
TEER NN DR RRVE RE

] i

' ‘lechwith our ES 1800 emulator. You

use commands to examine varia-

on the fly, check contents of regis-

, and determine current position in

. And real-time trace is displayed
urce level statements, machine

tructions or bus cycles.

e packages also include a logic

ate analyzer probe, and provide up to 2

: egﬁ_@rt,e:; of overlay memory plus full

Eprotect mode support for the 80286.

E ¢
& Source Level Debugging for Motorola
g Microprocessors

F. * Thewindow-oriented VALIDATE/

level debugger, a simulator and the
MCC68K compiler with our ES 1800

Commont SOOT MKAAAE TURDY GREAR 1 JTELDoE3 MRS 34
D — = AN o :
o (TINAND =

emulator. The package also includes

, i a logic state analyzer probe and our
3 development toolS available. well-known SCSI interface option, that
- significantly decreases download time.
Source Level Debugging for Intel In addition to up to 2 Megabytes
Microprocessors of overlay memory, you get target control
- Our VALIDATE/Soft-Scope and from your source code; powerful “C”
language macros for code patching,

" VALIDATE/Soft-Scope 286 packages

CIRCLE #210 ON READER SERVICE CARD

XEL package combines our XEl source-

Invest nowor pay later.

remote control and simulation of
1/O; plus user-definable windows for
viewing registers, stacks and variables

High-speed Symbolic Debugging
for Intel, Motorola and Zilog
Microprocessors

Our VALIDATE/ES DRIVER pack-
age includes easy-to-use (menu-driven
and remote control) software that
smoothly links the host functions to
the ES 1800 emulator. This allows the
upload and download of programs,
symbol tables and command files.

COMLRSTIN SUTVP
PULICEYVAON TY IFiidge
COMMIAACATIONS SETUP

Caiuniiiem

Dreais Nuster A3 6

FLEFORMAY .

#igrat Fuig Puemas. Exented TERHEN
ws‘!m:\m‘ﬂnu

Abedqun .

Axe2 gllioesyy

u)mﬂuuz

A& ddbra

Also included are alogic state analyzer

probe; the SCSl option for increasing

dowﬁload speeds by up to 30 times; plus

upto2 Megabytes of overlay memory.
To find out more about 8, 16 or

32-bit development solutions that save

money in the long run, write Applied

" Microsystems Corp., P.O. Box 97002,
~ Redmond, WA 98073-9702. Or call

1-800-426-3925 (In Washington, call
206-882-2000). ’

- fn Europe; contact Applied Microsystems Corporation Lid.,
" Chiltern Court. High Street; Wendover, Aylesbury, Bucks,

HP22 6EP. United Kingdom. Call 44-(0)-296-625462-

L

Applied

Microsystems
Corporation

12 REASONS WHY

You Should Do Your 80x86 ROM Development With
Microsoft C and C_thru_ROM

1. You can do it all at your PC
C_thru_ROM enables you to accomplish
start-to-finish 80x86 ROM application
development in the familiar MS-DOS
environment on your PC.

2. You’ll have a complete tool set
C_thru_ROM, teamed with your compiler
and linker, gives you a complete, full-
featured 80x86 ROM development
environment.

3. You’ll work with the ideal language
C_thru_ROM works with C, which is
clearly the language of choice for
professional ROM developers.

4. You’ll be teamed with the best
C_thru_ ROM works hand-in-hand with
Microsoft C, the implementation of
choice of the C language. And for those
who prefer to work in assembly language,
the package works with MASM, too.

5. You can stick with your linker
C_thru_ROM doesn’t burden you with
having to buy, learn and debug a new
and unfamiliar linker. It works with the
tried and true MS linker you already
have.

6. You’ll get a great debugger
C_thru_ROM has a comprehensive
debugger that allows you to debug in
source, assembly, or mixed mode. And it
gives excellent visibility through its
windows for source, commands, registers,
and expressions.

7. You’ll be able to debug remotely
C_thru_ROM enables you to sit at your
PC and debug your program as it resides
and runs on the target system - in source!
Working through user-defined
communication via a small kernel on the
embedded ROM, you can download,
modify, execute and debug your
application — even access global, local,
static, and register variables on the target
system.

8. You’ll have full code location
C_thru_ROMs flexible locator gives you
complete control of code location;
providing you full location of segments
and classes, and allowing you to place
code and data anywhere you’d like in
80x86 memory.

9. You’ll get pre-written startup code and

ROMable library

C_thru_ROM will save you a lot of time
and trouble by giving you pre-written,
bugfree startup code (in source) which
works with Microsoft-C and the
Microsoft-C Library. And C_thru ROM
comes with its own library of useful
ROMable functions — an additional
timesaving feature.

10. You’'ll get access to updates
C_thru_ROM'’s bulletin board is always
standing by to offer you the latest updates
and rapid bug fixes.

11. You get true ROM support
C_thru_ROM is specifically designed,
documented, and supported for the
professional ROM developer. Datalight
is fully committed to your success as a
ROM developer. Our unsurpassed
phone support will help you through the
roughest storms of ROM development.

12. You can’t go wrong

C_thru ROM comes with the added
assurance of a thirty-day, money back
guarantee. Full refund. No hassle.

301’(1_1) Money Back Guarantee

For ordering or additional information

Call Today Toll-Free
1-800-221-6630

And when you call us be sure to ask
for your complimentary copy
of our new guide
“The Essentials of ROM Development™

Datalight

17505 - 68th Avenue N.E., Suite 304
Bothell, Washington 98011 USA
(206) 486-8086

Microsoft and CodeView ar registered irademarks
of the Microsoft Corporation.

CIRCLE #211 ON READER SERVICE CARD

®*PROGRAMMER’S SOURCEBOOK

by Bruce A. Bergman

Dynamic Interrupt Attachment

The 1750A is tion is used to return control of the pro-

elcome to Programmer’s

Sourcebook, a column dedi-

cated to providing you with in-
teresting and useful code fragments and
programming suggestions aimed at em-
bedded systems development. I’ll provide
some of these, but our aim is to get you
involved. This month we’ll look at a meth-
od for dynamically attaching interrupts
to hardware routines, review some point-
ers for debugging Ada code, and discover
a way to reduce stack overhead when
calling procedures.

The MIL-STD-1750A processor is in-
arguably a powerful chip. However, as
some programmers would point out, its
most useful capabilities can also be the
most difficult to use effectively. One of
the more complex elements of this proces-
sor is the interrupt-handling scheme.

The 1750A has 16 interrupts, one of
which is a form of “software interrupt™ or
executive call. By carefully planning in-
terrupt use and layout, you can create a
simple, powerful interrupt-attachment
mechanism that allows a program to dy-
namically attach an interrupt to a corre-
sponding handler routine at run time.

Asdiscussed in the MIL-STD-1750A
ISA manual, each of the 16 interrupis
has a corresponding entry in the vector
table in low memory. This table contains
paired pointers, two for each interrupt,
telling the hardware where to store old
interrupt information and where to go to
handle the current interrupt. The storage
location is the linkage pointer (LP) area;
the interrupt handler location is the ser-
vice pointer (SP) area (see Figure 1).

These pairs of LPs and SPs occupy
memory locations 20 hex through 3F hex.
Each LP and SP must point to another
location within page 0 (address state 0) of
the 1750A’s memory. The LP area is an
open area of memory where three words
of information for each interrupt—the
old interrupt mask, status word, and in-
struction counter—are stored. Once the
interrupt has been handled, this informa-

cessor to the address one past where the

powerful, but its il e

The SP area is the heart of the inter-

rupt scheme because it’s where the inter-
most useful g

rupt handlers are defined. As in the LP
area, each interrupt has a three-word

Gapabiﬁﬁes can BISO area where a new interrupt mask, status

word, and instruction counter exist.

be the mUSt diﬁlcu" ‘When an interrupt occurs, the 1750A

stores the current (old) state of the pro-

to use eﬂectively, cessor in the LP area defined for the cur-

Listing 1
1750A assembly routine to attach an interrupt to a handier.

:: DYNATT-Dynamic Interrupt Attachment

:: This routine is used to dynamically attach an interrupt or BEX to 3

:: routine. It replaces the IM. SM. and IC for the specified interrupt.

:: If an ordinary interrupt shouid be replaced. RO should contain zero

:: If a BEX interrupt should be replaced. RO should contain a nonzero value.

rent interrupt. The processor then loads

:: Interrupts are enabled upon exit of tims routine

:; Inputs:
R0 O=Attaching interrupt handler. NOT O=Attaching BEX handler
R1 Interrupt/BEX mumber to attach to (0-15)
B2 - New interrupt mask {IM)
R3 New status word (SW)
= R4 Handler address {IC)
:: Outputs:
Nome. O1d service pointer infermation is overwritten with new.
:: Destroys:
2 R1
REFER SPTBL : Should point to start of service pointer areas
REFER BEITEL : Should point to start of BEX table
EEFER BENLP : Should point to linkage pointer for interrupt S5
DYNATT BQU 5 : Handle as ordinary interrupt replacement
LR RO.RO ; Is this a request for an interrupt?
BNZ BEXATT : NO. replace BEX information
MIS?P R1.2 : YES. index into proper table location
EFST R2.5PTBL.R1 : Store IN. SW. and IT at table offsst
BR LLEAVE : Time to leave
BEXATT EW § : Handle as BEX replacement
BST R2_.BEXTBL : Store IM and SN at table top
ST R4_BENTBL+2.R1 : Store BEX IC at proper location
LEAVE =] s : Clean wp and return
10 RO.BEMBL : Reenable interrupts
LST BEXLP : Continue where left off
B0

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 19

the new information and begins execu-
tion at the address defined in the SP area.
When the interrupt handler is done, it
usually returns control to the location just
past where the interrupt occurred by per-
forming an LST operation on the old state
information. By arranging all the LP
areas in a consecutive block of memory
and the SP areas in the next consecutive
block of memory, you can easily identify
the LP and SP for any given interrupt.

There is a catch to this idea, though:
interrupt 5, the software interrupt men-
tioned earlier; has the added ability to call
any of 16 additional handler addresses
using the 1750A BEX instruction. BEX is a
special instruction that activates inter-
rupt 5 and dispatches it to one of the han-
dler addresses based on the operand
passed to it. It’s a novel way of creating
software interrupts on the 1750A.

The SP area is slightly different. In-
stead of 16 additional three-word areas,
there’s one 18-word area containing the
BEX's new interrupt mask, the new status
word, and 16 instruction counters in con-
secutive memory locations. When a BEX
instruction is issued, the new information
is taken from the top of the table while the

Listing 2

Use of dynamic interrupt attachment routine at the assembly level.

:: This code assumes the Dynamic Interrupt Attachment BEX is D

DYNATT EQU 0O

; BEX number to use for the DYNATT routine

:; For ordinary interrupt attachment, RO should contain 0.
:; If BEX interrupt is to be attached. use nonzero value for RO.

REFER
X0RR
LISP
LIN
LIK
LIM
BEX
END

FLTEXP
RO.RD
R1.3

R2. IMASK3
R3.5HWORD3
R4, FLTEXP
DYNATT

: Floating-point exception handler address

: This is to be an interrupt (rather than BEX) attachment
: Attach to floating-point overflow interrupt (3)

: Use interrupt mask IMASK3 (could be any mask)

: Use status word SWORD3 (could be any status)

; Handler starts at FLTEXP

; Do the attachment now

Figure
1750A vector

table.

1

++ Page 0 (4S50}
P e R P % *
| wo oso | 1 set | w2 oz | o I P15 5915]

Guaranteed Portability for

your real-time systems.

A real-time,
multi-tasking,
ROMable kernel
for C programs.

Now you can have a portable base for
embedded systems that lets you grow
from 8- to 16- to 32-bit systems. CISC
or RISC, now your kernel can be as

portable as your real-time application.

C EXECUTIVE is especially suited for
high volume, low cost board level pro-
ducts for instrumentation, control,
data acquisition, and other real-time
applications.

Features

« Real-time, fully-preemptive task
scheduler.

« Optional file system available.

= Fast context switching time—17zs on
25MHz MC68020.

= Standard 1/O and data flow design
facilities are built in.

« Highly portable—supports Maotorola
MC68000/MC&8010,
MC68020/MC68030, MC6809, Intel

+ Rapid prototyping—test under UNIX,
DOS, VMS, etc., then download to
your choice of microprocessor.

» Use the latest microprocessor—
C EXECUTIVE is being ported to a
wide variety of both CISC and RISC
processors.

« JMI Portable C Library—a complete
ROMable and sharable library is
included.

Order Now

The JMI C EXECUTIVE single unit
binary price is $575. Source code for
all IfO drivers is included. Quantity dis-
counts are available.

To order, or for more information, write
or call JMI Software Consultants, Inc.,
215-628-0846.

Registered Trademarks: LINIX—ATET; MC6809, MC68000—Motorola, Inc.

I ? Distributors: Sweden, Unisoft AB, Vastra Hamngatan B, 5411 17
8080/8085, 8086/8088, 80186, Goteborg. Phane: 46-31176050; West Germany, Staub Computer
80286 80385 DEC LS|_11 Z]]Dg Integrations GmiH, Lochhamer Schiag 19, D-8032 Graefelfing, Phone

089/853987; France. COSMIC, 52, quai des Carrieres, 94227 Charenton

Z80, 7280, AT&T WE32100, Texas In- L= Foat Cgizlﬂsdd'-’?ml M-:(I%ﬁ&a.ﬁ?; Switzerland. RETIS Realtime Sot-
ware A, = u, nnoistrasse ., FRoNe: - -F7-16;

struments TMS34010, Intergraph United Kingdom, Real Time Systems, Lid., PO, Bax 70, Viking House,

CLIPPER, and the Nationial Semicon- Tetsen Street. Dauglas lsle of Man. British lsles, Phone: 624 26021,

Japan. Advanced Data Controis Corp.. Nihen Seimei Otsuka Bidg.,

ductor Series 32000. No 13-4, Kita Otsuka I chome. Toshima-ke, Tokyo 170, Phone: 576-5351

¢ High Level Language Support—
written in C, provides built-in

L) B

| ! JMI SOFTWARE CONSULTANTS, INC.
P.0. BOX 481 = 304 SHEBLE LANE
SPRING HOUSE, PA 19477

interface to user applications code. 215-628-0846
CIRCLE #212 ON READER SERVICE CARD

20 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

WRITEINC?
THEN YOU SHOULD
DEBUG IN C!

unsigned inl iter

inl prime = 1
igned char flags[8192] =

printf{"Sieve of Frastosthenes Test Pregram'a®)s

}/= signon =/
init_portz;
inil_portsO

Supported Processors:
8051 Family
68HC11 64180/Z180
68000 Family
8085

: Sen Abyosysterss, Inc, IAM
al Bruncss Machnes. ac. Unnois
raaries, Inc

The ultimate in time savings is obtained
when you debug your code in the same
language it was written. Code development
is accelerated as constant program print-
outs are no longer necessary. All displays

of your program, including the real-time
trace buffer, are in the form you specify,
with options for Source only, Source and
assembly or assembly only. Use vour favor-
ite C or PL/M compiler with our emula-
tion system and SourceGate™ to enhance
productivity of your engineering depart-
ment. If you are working with different
microprocessors, SourceGate provides the
same interface for each, so learning curves
are almost nonexistent when switching
between projects or processors.

SourceGate was written from the begin-
ning to enhance the power of our 200
Series emulators with an advanced source
level debugger: This total integration assures
that the emulmor capability is utilized and
not measked as in afterthought debuggers.
HMI enhances this software capability with
the most advanced line of in-circuit emu-
lators on the market today. Current support
is available for the 8051 family, 68HCI1,
64180/7180, Z80, GB00O family, 6809 and
8083. SourceGate runs on all IBM PC family
computers, Sun Workstations and many Unix
systems. For complete details, contact:
Huntsville Microsystems, Inc.

PO. Box 12415

4040 South Memorial Parkway

Huntsville, AL 35802

(205) 581-6005

TWX: 510-600-8258

FAX: 205-882-6701

Cscle Addr. Data Ext,

int boahex(s) /2
Balp

miT BEBdA LINK

Ereak Trece
Freeze Trace
Disasw/State Mede
Search Trace Bata
Scralling

Print Trace

Slatus: B P IPL FC R Bus fctiviis

Comwert low digit of ¢ to ASCII hex »

Triguer Trace
Bisassenbly Mode
State Mode
Mixed Mode
Statas Info

Bus Activity

/2 83 becomes ‘B 'Y

/% Should be ‘&’ —'F7 o/

CIRCLE #213 ON READER SERVICE CARD

new instruction counter is taken from the
appropriate slot in the IC table.

The BEX table should be placed in the
next consecutive memory location avail-
able, Once these three tables are correctly
set up and pointed to in the vector table,
it’s a simple matter to change interrupt
information. The tables must remain
contiguous for this method to work,
however.

Connecting an interrupt handler to an
interrupt used to mean you had to know
the location of the SP area and move the
information into it. The code in Listing 1

Listing 3

allows you to specify the interrupt you
wish to attach a routine to, the address of
that routine, and a new interrupt mask
and status word. This routine needs to
know only three things: (1) the location of
thestart of the SP table (with 16 consecu-
tive SPareas), (2) the location of the start
of the BEX table (with all 18 consecutive
locations), and (3) the location of the LP
area for interrupt 5 (the BEX interrupt).
Since the address of the SP for inter-
rupt 5 must point to the start of the BEX
table, it’s impossible to change the inter-
rupt handler for interrupt 5 unless you

Use of elaborated constants to debug algorithms in Ada.

package DEBUG_CONSTANTS is

-- GET_A_VALUE takes the (optional) name of the constant that will
-- be receiving the initial value as a result of this function.

function GET_A_VALUE(name :
end DEBUG_.CONSTANTS:
with TEXT_I0:
package body DEBUG__CONSTANTS is

in string := *7) return integer;

-- GET_A_VYALUE takes the (optional) name of the constant that will

-- be receiving the initial value as a result of this function.

function GET_A_YALUE(name
-- Instantiate integer text i/o

package II0 is new TEXT_IO.INTEGER_IO{integer):

value : integer:
begin

: in string := *") return integer is

-- If a name was provided, display it. Otherwise. just get
-- the initial value and return it to the constant.

if (name /= =") then

TEXT__IO0.put(“Enter a value for "~ & name & ~': 7):

else
TEXT__TI0.put{“Enter a value: 7):
end if:
110.get(value):
return value:
end GET__A_VALUE;
end DEBUG_CONSTANTS:
with DEBUG__CONSTANTS;
with TEXT_I0:
procedure EXAMPLE is
use DEBUG__CONSTANTS:
use TEXT__IO;

-- Get the initial value of a_constant from user

-- and make b_constant and c_constant dependent on that value.

a_constant - constant integer := get_a_value(“a_constant™):

b_constant : constant integer := a_constant * 4.

c_constant : constant integer := get_a_value + b_constant;

begin

put_line(~A_constant =" & integer'image(a_constant))}:
put__line(“B_constant =" & integer’image(b_constant)):
put_Tline(“C_constant =" & integer'image(c_constant)):

end EXAMPLE:

22 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

address it as BEX 0. (Note that the routine
in Listing | assumes BEX 0is free. Ifitisn’t,
use an open BEX interrupt and be sure to
call the routine with that BEX number in-
stead.) An example of this routine, as-
suming the memory layout mentioned, is
shown in Listing 2.

ELABORATED
CONSTANTS

When debugging Ada source code, try to
eliminate as many potential algorithmic
problems as possible by using constants
instead of variables. Using constant val-
ues makes debugging easier when chang-
ing values is the problem. However, if
your program relies on having a wide
range of values for a particular variable,
you must come up with other solutions—
unless you're using Ada, that is. Ada con-
stants have the unique ability to change
their initial value and then become un-
changeable for the remainder of the pro-
gram. Take the following Ada constant
declaration:

a_constant : constant integer := 10;

When the resulting program is executed,
the value of a_constant is set to 10 during
program elaboration. If the initial value
of the constant depended upon a value
defined elsewhere, vou could simply
change the declaration to reflect that:

a_constant : constant integer :=
other__value;

Note that this kind of declaration is
only valid when the base type of the con-
stant is explicitly declared. For instance,
the declaration

a_constant : constant -= other__value:

is invalid because the base type of the con-
stant must be part of the declaration.

Taking this one step further, it’s possi-
ble for the program to ask the user for the
initial value of the constant or even calcu-
late the initial value of the constant be-
fore using it. Since the result of the con-
stant assignment can be the return value
of a function, other_value could very well
be a function call that queries the user for
the initial value of the constant.

Listing 3 illustrates the use of elabo-
rated constants when the assignment isa
calculated value or function.

Assemblers/SimuIators/CompiIers

Series 3 Simulator- G LSy
Series 3 runs under CP/M 80, MERETS GRS Anwambiars Deboyeers Cloomliers | GLIxmys| Somce

CP/M 86 and MSDOS. This Series Sorles3| Series4
has Full Listing Control, Condi- vMS vMS VMS

tional Assembly & Built in Cross Software |CP/M80 ULTRIX ULTRIX ULTRIX
Reference. There is Unlimited Product |CP/MB6|MSDOS| SUN SUN SUN All-Systems
Program Size, Number of Sym- Super 8 - 199.50 | 995.00 499.50
bols and Macros. The Linkers Z-8 199.50 | 199.50 | 995.00 499.50
output: Intel Hex, Extended Intel Z-80 199.50 | 199.50 | 995.00 499.50
Hex, Tektronix Hex, and Motorola |z_280 299 50 |1250.00
519, S28 and S37 formats. Z-8000 299.50 | 299.50 [1250.00
Series 4 1802 199.50 | 199.50 | 995.00

Series 4 requires at least 640k of ~ [8301 198.50 1 199.50 | 995.00
memory. These products have all {84180 199.50 | 199.50 | 995.00
the features of Series 3 plus: 32 6501 199.50 | 199.50 995.00
Character Labels, User Defined [292 12950 | 1950 |i2r =00
Sections, Local Labels and a %{:g = ;gg'gg 12?888
Librarian. The Linker outputs 680028 | 19950 | 19950 935'00
el e Byeetedocl i Hex, 6801,3 | 199.50 | 199.50 | 995.00 2000.00
Tekironix Hex, and Motorola $19, . |zon,’ 19950 | 19950 | 995.00 -
528 and S37 formats as well as 5805 10950 | 19050 | 995.00
Global, Abbreviated Global, 6809 199.50 | 199.50 | 995.00 2000.00
ngOf?k i{‘% Zax SY"‘SOI leb'e 68c11 199.50 | 199.50 | 995.00 2000.00
rmats. Listings can be relo- £8000.8,10| 299.50 | 299.50 |1250.00
cated toreflect run-time addresses. |ggo20 399.50 |1500.00 2500.00

Simulator-Debuggers B8400/c00 | 199.50 | 199.50 | 995.00
The Simulator has 16 Breakpoints ~ [8044/51/52| 199.50 | 199.50 | 995.00 i 2000.00
with optional Counter Field. The 80451 199.50 | 199.50 | 995.00 2000.00
Symbol Table is limited only by 80515 199.50 | 199.50 | 995.00 2000.00

the amount of memory. Bufiers of 3080 alid 199'50 ggg'gg
256 bytes may be opened for /'O Lig 12090 | 199,90 s

ports. The Simulator-Debuggers gx{;% 133‘2?3 133'23 1223%
run with 512k of memory. ; : 7

80186/286 | 199.50 | 199.50 |1250.00
C Compilers 80386 ! 299.50 [1250.00
The C Compilers support in-line 83351 199.50 | 199.50 | 995.00
assembly language and ROMable |8748 199.50 | 199.50 | 895.00
code, and includes the following: [740 199.50 | 199.50 | 995.00
Macro Processor, full Floating Cops 400 | 199.50 | 199.50
Point support, complete Assem- |F8/3870 | 199.50 | 189.50
bler, Linker, Librarian and NCR32 199.50 | 199.50
Libraries. Library Source Code NEC7500 | 199.50 | 199.50

Purchases require a signed NSC800 | 199.50 | 199.50
license agreement. 32000 199.50 | 199.50

More formats available

Name Product___ Operating Sysiem

Company Series Amount $

Address Shipping $ Total §

City Zip Signature
Check COD (U.S. Only) I

Phone

MC/VISA #

Educational discount available.
To order, call toll free in U.S. (including HI, PR and V1):

i 43-8144
e 2500ADSOFTAREINC

TELEX: 752659/AD
For more details, ask for a free brochure. 109 Brookdale Avenue
(Shipping is $31.00 per unit for overseas orders. Toll Free number does PO. Box 480
not appiy lo overseas. 2500AD pays COD charges.) Buena Vista, Colorado 81211

Expiration Date

REDUCING STACGK
OVERHEAD

Unless you have access to a C compiler
that runs on a RISC-based computer,
you'd be wise to optimize your programs
to take advantage of the best parameter-
passing scheme possible.

When generating parameter-passing
code for an application, compilers try to
pass as many parameters in registers as
possible. This practice not only improves
the access speed for the called routine but
reduces the amount of stack space re-
quired by the application.

Small objects that aren’t composites
or aggregates can be passed most easily
by placing them directly in a register be-
fore the call is made. However, if the
number of objects to be passed exceeds

Successful
embedded systems
programming
requires application

LINKer

TOOLS for
MICROSOFT C#=

THE MISSING

FIRMWARE DEVELOPMENT

of obscure and
hard-won
knowledge.
i
MICROSOFT g
/]

Downloads
1o..

| IN-CIRCUIT |
EMULATOR

Produces

ROMABLE
CODE

[

SYSTEMS & SOFTWARE, Inc.

Call or Write for FREE Booklet...
“WRITING ROMABLE CODE
USING MICROSOFT C®”

o 3303 Harbor Blvd. = C-lI

Costa Mesa, CA 92626

714/241-8650

CIRCLE #215 ON READER SERVICE CARD

the number of registers available or if nu-
merous aggregate objects are to be
passed, the compiler must start passing
the objects on the stack. In a recursive or
reentrant application, heavy use of the
stack can have a significant impact.

So how do you reduce the chances of
having objects passed on the stack?

Try placing the parameters in a record
or structure and passing the address of
the structure instead. The amount of in-
formation that must be passed can then
be reduced to just one item.

For instance, if you have a procedure
declaration in C that looks like this:

int junk.calli(a, iboc,-d.e;-f7gth;
1, kAN a0, 5p)

inta, b, c,d, e T, g, h;

char:*1 =%j:

long k., 1. m, n, 0. p;

you can reduce the overhead on the stack
by placing all the elements of the call into
a structure and passing the address of
that structure, as follows:

struct params_struct |
dnt-ab -c;~di e f.-Gghoh;
chiar. 1.¢%]:
long k, 1, m, n, o, p:

{ call_params:

int junk__call(¶ms)

struct params_struct *params;

The elements can be manipulated with
about the same level of ease, and the ad-
vantages of reducing stack space far
outweigh the cost of typing a few extra
characters.

Embedded systems require intimate
knowledge of the systems and tools avail-
able to the programmer; often this knowl-
edge is obscure and hard-won. If you have
programming tips you'd like to share,
send them to me care of the editors of
Embedded Systems Programming, 500
Howard St., San Francisco, Calif. 94105.
We prefer tips to be as machine-indepen-
dent as possible and primarily in C, Ada,
Forth, or assembly. By taking advantage
of the breadth of knowledge of our read-
ership, we hope to disseminate this infor-
mation to you every month.

Bruce Bergman is a software engineer at
TeleSoft, San Diego, Calif., specializing
in Ada compilers targeted to the 1750A.

MTOS-UX, THE
SYMMETRICAL,
TRANSPARENT
MULTIPROCESSOR
SYSTEM...BALANCES
COMPUTING LOAD...
MINIMIZES BUS
CONTENTION...

AND RENDEZVOUS
WITH Ada

" For the

past de-
cade, MTOS
multiprocessor
support has been
out there, solving
some very demanding
~/ problems. Because
~ MTOS stands alone in its

ability to support up to 16
CPUs on a common bus in a
tightly-coupled configura-
tion. MTOS balances the
computing load and opti-
mizes the use of available
computing resources. And

since the number of CPUs is
transparent to application
code, programmers write
tasks as if there’s only one
CPU. In fact, on application
runs in the same way with
one or many CPUS — with
additional CPUs offering ad-
ditional throughput.

Ada RUN-TIME
PACKAGE

MTOS-UX/Ada is a
complete run-time
system for TeleSaoft ™
Ada. Tt supports the
Ada tasking model,
all Ada primitives
and the full range of MTOS
services. The multiprocessor
feature allows tasks to run on
any available CPU, and to
rendezvous transparently
with tasks on other CPUs.

HOW MTOS-UX
GOT RICH

Our designers took the ap-
proach that “given the two al-
ternatives, rich is better than
poor.” So MTOS-UX has a
very complete range of coor-
dination and other facilities:
event flags for broadcasting

the occurrence of multiple
asynchronous events, sema-
phores, message exchanges,
signals, freespace man-
agers, controlled shared vari-
ables (an implementation of
Per Brinch Hansen's “condi-
tional critical regions”), and
much more. And it's all put
together in a way that's sim-
ple, elegant and highly
etficient.

/" Industrial
Programming Inc.

“The Standard Setter”

100 Jericho Quadrangle

Jericho, NY 11753

Phone: (800) 228-MTOS
NY: (516) 938-6600

Fax: (516) 938-6609

Telex: 429808

For detailed information
about all MTOS products, or
to obtain a free copy of our
booklet “On Operating Sys-
tems,” call (800) 228-MTOS.

CIRCLE #216 ON READER SERVICE CARD

ou have

RTAda; model: Robot controller Coding C.md Remote

. Debugging

package body PANEL is
task READ PANEL is

_ entry PANEL _INPUTS (STATE : in PANEL.STATE _ TYPE);
eénd READ _ PANEL ;

Detailed Design

ask body READ _ PANEL is

: 'ATE_TYPE:
CARDtools Control Maps Builder; model; Robot controller ELOUTPUT TYPE:
2 L {0}
push_ butions . Y
T e (STATE: in PANEL STATE TYPE) do

SeNsor . npA ROBOT SEORO!

wos_inpA s :'Z.;“L:,m CARDtools Data Flow Diagram Builder; model; Robet controiler

DROgEm robot control

I HYPERLINK
1A) m I €1 {0) ?
contRoL PANEL | [wrerPRer CONTROL CONTI
PROGRAM MOTION SENS
x | | saremenTs

13 _tp_proc | | A_interpreter d4_mot_cntt ne_sel
b o pe] mepon o mOLOR, sensor_
EuAons paned il e L e BEARGW g

- sage

110 mowon_ e
i iF
CARDtools Taskbuilder; meodel: Robot controller H 1 EOMIRGL 3 5
& o [] romeaien High Speed
i ~— o nom Downloading
mobem acn | Eren sasess e

Requirements

High Level Design
and Performance
Analysis

HOST

what 1t takes

real-time?

— Operating System Debug

10 and File Management

77

~

80960
1790A

J/

A
— Multiprocessing Embedded Networking
Microprocessors
TARGET

Successful real-Hime design for
embedded systems takes more than extra-
ordinary helpings of craft and creativity.

It also takes the right tools. Which may
explain why our CARD (Computer-aided
Real-time Design) technology is behind the
development of well over fifty million lines
of real-time code.

We're not talking about ordinary
tools spruced up with a few real-time exten-
sions. CARD technology was created
exclusively for the real-time world specific-
ally for integrating run-time and software
development environments.

We are talking about tools such as
reusable software components like VRTX
the real-time operating systems standard.
Real-time implementations of C and Ada.
Automated analysis tools for verifying sys-
tem performance. Our CARDtools product
gives you everything you need including
specifically tailored design aids to manage
software organization and data flow.

And automated documentation so
complete, so accurate, it satisfies even the
DoD’s rigid 2167A specs. Not to mention
the demands of our hundreds of exacting
commercial customers.

So if you'd like to have what it takes to
make your next real-time project run more
efficiently call us, toll free, at (800) 228-1249.
Or (214) 661-9526 in Texas.

Because you can only be a success in
real-time design if you've got the right stuff.

SREADY
SYSTEMS

CIRCLE #217 ON READER SERVICE CARD

cbugging is one of a series

of steps necessary to pro-

duce quality software. It

consumes much of a pro-

grammer'’s time, yet is one
of the least discussed and studied tasks in
software development. The process of de-
bugging, as described by Robert Ward in
his book Debugging C (Que Corp., 1986),
involves four phases: testing, stabiliza-
tion, localization, and correction.

Testing exercises the capabilities of a
program by stimulating it with a wide
range of input values. First, the program
is tested under normal conditions. If it
appears to work, its handling of special
cases and boundary conditions is tested.
Tests should be carefully engineered to
force execution of all program branches
and thus ensure that every decision node
is executed correctly. Any peculiar per-
formance by the program during testing
is considered a potential bug and should
be investigated.

Stabilization, the second phase, is an
attempt to control conditions to the ex-
tent that a specific bug can be generated
at will. Usually a given set of test condi-
tions will cause a bug to appear, and the
bug will remain even when statements
are added in the source code. As we’ll see,
however, certain classes of bugs typical in
embedded C programs are difficult to
stabilize; any change in the source code or
linking process can significantly alter the
bugs’ behavior or even make them appear
to go away.

In the localization stage, the program-
mer moves in for the kill. Localization
involves narrowing the range of possibili-
ties until the bug can be isolated to a spe-
cific variable or segment of code. There
are three general approaches to this
problem.

One approach is to construct a hy-
pothesis to explain how such data might

UK goIng
Embedded

28 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

be created, then modify the experiment
to test the validity of the hypothesis. This
process of localization employs the scien-
tific method of problem solving, requir-
ing skills quite different from those need-
ed to generate the code in the first place.
Modifying the experiment itself will also

cause some bugs to behave differently. corr&ctinn is the

Another way to localize a bug is to

single-step through the suspect code, ﬁnal step 0' a“v

watching carefully for the first sign of ab-

normal behavior. Since the programmer = =
knows what’s supposed to happen, the dﬂh“gglng EXErcise.
problem can often be pinpointed the first

time through the program. The problems some“mes hug

with this technique are that it tends to be i = =
tedious when the program containsloops GAMICAtiON IS

or complex structures and that quite of-

ten the bug won’t manifest itself during Stralgh“ﬂmard;
single-step execution.
Bugs can also be localized by examin- ~ Sometimes a h“g
ing a trace history of the executed code.
Microprocessor emulators can be used to reﬂects a
capture a trace of the program as it ex-
ecutes, and hardware breakpoints can be H
used tostop execution where desired. The concept“al dESIgn
trace history is then used to reconstruct ﬂ
what happened when the bug occurred. aw.
Correction is the final siep. After a
bug is located, it must be eradicated. Of- _
ten, correction is straightforward; some-
times, however, a bug reflects a conceptu-
al design flaw. In any event, after the bug
is corrected, the process starts over from
the testing phase.
Debugging a program running under
the supervision of an operating system
can be quite different from debugging a
program in an embedded system. The
primary distinction is that the available
tools are different. An operating system
environment may support native debug-
gers, where an embedded system may
not. Each system has its advantages.
In the native environment, the compil-
er, source code, debugger, and target pro-

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 29

Debugging
Embedded G

gram are all together in one place. Cross-
debugging—debugging programs in a
separate target system—requires a moni-
tor or an emulator. The code must be
moved back and forth between the devel-
opment system and the target. The ad-
vantage is that emulators provide hard-
ware specifically designed to facilitate
the debugging process.

The following process is typical of a
software development effort once the
specification for an embedded systems
program has been determined:

1. Design the program.

2. Code and edit the program (during
this step we may learn how todostep 1.)

3. Compile the program. If compile-
time errors occur, localize to find the er-
rors, then return to step 2.

4. Link the program. If link-time er-
rors occur, modify the link commands
and relink. If necessary, return to step 2.

5. Test the program. If run-time errors
occur, stabilize and localize the bugs,
thenreturn tostep 2. If necessary, go back
tostep 1.

To evaluate debugging tools, we need
to understand the sources of potential
bugs. In Karel the Robot (John Wiley &
Sons, 1981), Richard Pattis cites four
classes of bugs: lexical, syntactic, intent,
and execution. Lexical and syntactic
bugs are identified by the compiler at
compile time; intent and execution bugs
are identified by testing the program at
run time.

COMPILE-TIME
ERRORS
he compiler makes several passes
I through the code during compi-
lation. The actual number of
passes depends on the compiler, but most
compilers make three or four. Bugs are
usually discovered only in the first two
passes. The first pass, made by the pre-
processor, expands macros and reads in-

cluded header files or other source files.
In the next pass, the parser and lexical
analyzer attempt to understand and pro-
duce code from the source statements.
Most of the error messages are generated
during this second pass.

The following are simple examples of
compile-time errors:

m Invalid preprocessor directives
(#page = 7)

m Illegal operator use (2a=123;)

= Illegal symbol or identifier name
(byte j:)

o [llegal punctuation or character
(3=0:)

o Illegal language grammar (if j==0
then j=3;)

®m Incompatible type operation
(*r =r;)
m Invalid symbol or number

(int 23skidoo;)

For the most part, these bugs result from
typos or errors made by a programmer
still learning C and are classified as syn-
tactical bugs. Stabilizing these bugs isn’t
an issue since the bug recurs each time
the file is compiled.

Localization of a compile-time error is
usually fairly easy, although occasionally
a bug (such as an open comment) may
require a little work to localize. Once the
bug is localized, it’s usually simple to
correct.

30 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

LINK-TIME ERRORS

he linker’s job is to connect other
I (hopefully tested) modules to the
program and build an executable
entity. [t’s possible that one or more of the
modules linked to the target program will
be either test routines capable of exercis-
ing the target program or stub modules
simulating a section of code yet to be
written.
If link-time errors are detected, most
likely the linker couldn’t find all the parts

Lexical and
syntactic bugs are
identified by the
compiler; intent and
execution bugs are
identified by testing
the program at run
time.

or libraries required to build the final pro-
gram or couldn’t understand the object
modules representing the program due to
incompatible format. (These problems
are usually also reported by the compil-
er.) In either case, the error is in the com-
mands to the linker or the format of the
object module, not bugs in the program.
Only rarely, such as when a library func-
tion name is misspelled, can a bug cause
link errors.

RUN-TIME ERRORS

t this point, the programmer
A has succeeded in getting the

program to compile. This ac-
complishment doesn’t mean that the pro-
gram is free of typos or incorrectly
formed statements; it simply means the
compiler didn’t detect them.

Now we come to the difficult bugs.
Run-time bugs that exist without cata-
strophic results—the program will run
but does the wrong things—are intent er-
rors; those that cause the program to ter-
minate abnormally are execution errors.

Anintent error occurs whenever a pro-
gram runs to normal completion but pro-
duces incorrect results. Examples of in-
tent errors are one-liner, typematch,
boundary, macro, and design bugs.

The simplest intent error is the one-
liner, a syntactically correct statement
that has an error in it. These errors are
usually caused by an incorrect assump-
tion regarding operator precedence, an
incorrect choice of operator, or misplaced
or missing punctuation. These errors,
which I call “awshitical” bugs (based on
mutterings from programmers who have
spent considerable time staring right at
the erroneous statement without seeing
the bug), are a subclass of intent bugs.
Here are a few:

if (@=1 {...}

Dang, we wanted to compare i, not assign
toit. The if condition will always be true.

1t (1=1); {...}

Oops, we put a semicolon after the if
statement. The if has no effect on the
body of statements that follow.

while (c = getchar() 1= 0) {...}

We forgot operator precedence; ¢ will be

The simplest intent
bug is the one-liner,
a correct statement
but for misplaced
punctuation or

an incorrect
assumption about
operator
precedence.

1 or 0. What we meant to write is
((c=getchar()) != 0).

Boundary bugs show up when test in-
puts are designed to test the boundary (or
beyond-boundary) conditions of the pro-
gram. When dealing with arrays, it’s easy
to create a boundary bug by forgetting
that the 10th element in a 10-element ar-
ray is actually at array[9]. [t’s not uncom-
mon for even the most seasoned program-
mer to occasionally generate invalid
array indexes within while and for loops,
especially if the loops are at all complex.
Out-of-bounds array indexing can also
cause viral bugs (described later).

Boundary bugs don’t necessarily in-
volve arrays. Any variable has a limited
range of values, so tests at (and, if al-
lowed, beyond) these limitsshould be run.
Listing 1 contains two potential bound-
ary bugs.

On machines that implement 16-bit
ints, requesting more than 32,767 bytes
will produce undesired results due to the
signed comparison 1(n. Also, if zero bytes
are requested, the function can never re-
turn an EOF, even if no characters are
available. This exception brings up an in-
teresting point: if the programmer can
guarantee that the calling function will
never ask for zero characters, then this
boundary need not be tested. Indeed, by
definition the zero-length buffer bug
doesn’t exist.

A more complex form of bug is the

type mismatch, or typematch, bug. It oc-
curs when the programmer attempts to
pass arguments to a function but the
called function expects arguments of a
different type. Although some of the
newer compilers will catch this and some
lint utilities are designed to look for pre-
cisely this type of error, typematch bugs
still seem to crop up now and then. Here
are two examples:

double nbr = 5.0;
int x:
sscanf(“123",“%d",x);
printf(“%f".nbr):

In the third line, x should be &x; in the
fourth line, the argument type is incor-
rect. The function argument prototyping
in newer compilers may catch these er-
rors for library calls, but programmers
can call their own functions and may not
have included argument prototypes in
their header files.

Macro bugs are errors that are inad-
vertently caused and camouflaged by
macro expansion. When the preprocessor
expands macros, it substitutes the macro
definition anywhere the macro name ap-
pears in the body of the program. The
programmer must be aware of what the
code will actually look like after the mac-
ro expansion. If the macro contains pa-
rameters or other macros, there are even
more things to consider. In Listing 2, both
expansions of the macro will cause intent
€ITors.

In the first expansion, nbr is incre-

Listing 1

Code containing two potential boundary
bugs.

/* Read n characters from stdin to buffer.

*+ Return EOF if end of file. otherwise return OK.
int getinput(n.buffer)

int n:

char *buffer:

int i c:
for (i=D; itn; i+)
¢ = fgetc(stdin)-:
if (c=E0F)
return{EDOF) :
*buffer+ = c:
! return{0K) :

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 31

Debugging
Embedded G

mented twice; in the second, the macro
expands to (nbr&0x7f} ‘0’ &&nbra0x7f(="9")
?1:0) and doesn’t perform at all as might
be expected. (My compiler concludes
that the statement is always false and op-
timizes it to a jump instruction.)

Intent bugs characterized by flaws in
the design approach are called design
bugs and result from incomplete compre-
hension of the problem. Some problems
are so complex that it’s hard to compre-
hend the entire problem at once. Some-
times the insight needed tosolve the prob-
lem comes from trying to program it.
Design bugs are often the result of some
simple oversight by the programmer.
Computers are more exact than we hu-
mans and sometimes embarrass us with
their explicit logic.

In the alphabetical sorting function in
Listing 3, tests were run using all upper-
case or all lowercase strings and the func-
tion worked flawlessly. When uppercase
strings were compared with the lowercase
the function claimed the uppercase string
should come first, regardless of the char-
acters. This wasn’t expected.

Design bugs like these can belocal toa
function or result from the interface of
two or more functions. As design errors
span a larger scope, they are considered
to be integration bugs.

Programs that terminate abnormally
contain execution errors. These bugs may
be detected by run-time type checks,
bound checks, or hardware-fault detec-
tion mechanisms in native environments,
but in an embedded application they may
simply cause the system to crash. Exam-
ples of execution bugs are division by
zero, running a program with link-time
errors, incorrectly implemented inter-
rupts or assembly code, out-of-bounds ar-
rays, and assignment to an invalid (unini-
tialized) pointer.

Simple execution errors such as divi-
sion by zero can be easy to stabilize, pro-
vided the zero is a direct result of a con-
trolled test case. Otherwise, they can be

hard to localize. For example, some pro-
cessors issue an interrupt when an illegal
operation is attempted. If this interrupt
wasn’t expected, the programmer may
not have set a valid vector in the interrupt
vector table. In this case, the control flow
may go “into the weeds” and the original
cause may not be readily apparent.

Many execution bugs are the result of
an errant store through anincorrectly ini-
tialized pointer or at an out-of-bounds ar-
ray index. These bugs belong to a very
nasty class called viral bugs and can be
extremely hard to stabilize and localize.
They crop up in C programs because of
the unrestricted run-time use of pointers,
array indexing, and casting. The effect of
a viral bug——corrupted code, data, or
stack—is usually not apparent until sev-
eral (million) instructions later. Even
then the infected data might not prove
catastrophic but may cause something
else to become infected. At any rate,
when the bug eventually surfaces, the
symptom usually has nothing to do with
the original bug.

Ordinarily, uninitialized pointers are
more insidious than out-of-bounds ar-
rays. An out-of-bounds array reference
usuallyattacks a stack frame or dataarea
adjacent to the location of the array. An
uninitialized pointer can attack any-
where and is very often inconsiderate as
to whether it attacks code or data. Fur-
thermore, the pointer will probably con-
tain a different initial value each time the
program is run, causing an entirely dif-
ferent symptom each time.

32 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

Listing 2

Expansions of this macro will cause
intent errors.

#define 1s_ascii_digit(x) ((x)'0’'8&&x¢="9')21:0)
func(nbr)

int nbr;

|
L

if (is_ascii_digit(++nbr))
printf(“% ".nbr):

if (is_ascii_digit(nbr&0x7f))
printf(“% ", nbr&0x7f);

}

Listing 3

An alphabetical sorting function
containing design errors.

/* An ASCIT collating function -

** return YES if s1 to follow s2, else return NO.
*

alphasort(s1, s2)

char *s1, *s2;

{
i

while (*s11=0 & *s21=0)

f
1

if (*s1 { *s2) return(NO);
if (*s1) *s2) return(YES):
/* strings are equal so far */
sTh+; /* try next char in string */
S2++;
i
/* we reached the end of one string */
if (*s1) return(YES):
return(N0):

Caution: A

MicroSCOPE
debugger
may create
the need for
additional
hardware.

Give yourself the luxury of choice with
MicroSCOPE." The symbolic cross debugger for
80x86 embedded systems.

MicroSCOPE speaks C, PL/M, FORTRAN, Pascal,
Ada and Assembler. It has windows, full source display
and immediate evaluation of any expression. Instant
help is even supported by a quick “examples only”
feature. So you can do your job faster.

And with advanced features like movie mode, 100
conditional breakpoints and very tight host-target
integration, you'll have all the power you need.

It works on a PC or VAX with the best compilers
(Intel, Microsoft, etc.), enhancing emulators by adding
source display and symbolic evaluation. Or you can add
new debug stations without an emulator, using Direct
Connect:* That saves you money.

Call us for a free demo diskette. Then make your life
easier with MicroSCOPE and rediscover something
everyone needs. A day off.

MicroSCOPE

For a free demo diskette, call

1-800-242-556

Trademarks of First Systemes Corporation: MicroSOURE. Direct Comere.
Copyrgha 1388 Farst Systemss Corporation.

First Systems

CIRCLE #218 ON READER SERVICE CARD

AP R SRR |
Debugging
Embedded G

SUBTLER BUGS
n addition to compile-time, link-
I time, and run-time errors, bugs re-
sulting from integration, portability,
and compiler errors may occur.

Integration bugs form a huge class of
programming errors. These errors mani-
fest themselves when two or more mod-
ules are combined to form a program.
The bugs may not cause an error when
the modules are tested separately but
may show up as the system becomes inte-
grated into one complex progran. Dur-
ing integration, function return-value
typematch bugs can become apparent. A
function may return an error status if the
data it processed is invalid. If the caller
fails to check the error status, it may in-
advertently continue processing with bo-
gus data.

The opposite may also occur: a func-
tion that’s supposed toreturna value may
instead contain a void return. In this case,
the returned value is undefined and may
appear to work during initial testing.
Once integrated into a program, though,
it creates an unexpected bug.

Global variables often cause problems
that surface during integration. These
variables are like salt: they should be used
sparingly lest they spoil the stew, One
module can change the currency of a glo-
bal variable and cause another module to
do something unexpected later.

These types of errors require the pro-
grammer to rethink the layering of the
program at a modular level. A source-
level debugger may be needed to under-
stand how the interactions occur and to
hack in a fix, but the real solution might
well lie in the program architecture.

Interrupts can present their own set of
difficult bugs. An obvious example of an
interrupt bug occurs when the interrupt
neglects to save or restore the entire sta-
tus of the machine before returning, as
often happens when modifications have
been made to an interrupt routine. If the
modification uses a register that wasn’t

saved during the interrupt prologue, then
any routine in the foreground program
that also uses that register is vulnerable to
the interrupt. This oversight can cause
previously working code to break.

An interrupt routine may call a func-
tion that isn’t reentrant (a problem if the
foreground program also uses that func-
tion). Library routines, particularly in
floating-point math libraries, may be
recntrant for one brand of compiler but
not for another.

Generally, interrupt routines require
that a debugger be able to deal with code
at the assembly language level. In addi-
tion, the debugger must be able to oper-
ate transparently to the interrupt and vice
versa. In multithreaded or multitasking
systems, integration bugs can breed and
multiply. Shared resources must either
have lock semaphores or be designed to
be reentrant.

Processes that malloc memory or open
files must free the resource when they’re
done with it; otherwise, the system will
eventually—maybe even two or three
days later—run out of memory or file
handles and lock up. Programs employ-
ing setjump/longjump and goto statements
must be carefully designed to avoid ab-
normal control flow that may leave these
resources tied up.

A cousin of the typemaich bug is the
portability bug. This bug surfaces during
porting from one machine to another and
can cause both intent and execution er-
rors. Since C is implemented in different
ways on different machines, tricks that
work on one machine may not work on
another.

Variations in the size and alignment of
various objects, particularly differences
in the implementation of types float and
double, can also cause problems. Seg-
mented microprocessors may treat point-
ers differently from nonsegmented ma-
chines; stack-addressing direction and
byte ordering can also be different. Pro-
grammers with limited experience writ-
ing portable C code will undoubtedly dis-
cover these pitfalls the first time they
compile their old programs on a new
machine.

Compiler bugs are rare, but they do
occur. All too often, the bug isn’t really
the fault of the compiler but of poor cod-
ing practice. Many of the newer compil-
ers on the market perform code optimiza-
tion, and the optimizer may make as-

34 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

sumptions about the program that aren’t
desired. This problem is further compli-
cated by the fact that debugging is usual-
ly performed on unoptimized objects,
while the debugged program is compiled
using the optimize mode. If bugs show up
after optimizing, then the optimizer is
probably the culprit.

Optimized code, especially globally
optimized code, is tougher to debug since
the object program may not match the
source code line for line. Also, some
source-level debuggers won’t even allow
optimized code to be debugged, forcing
us to retreat to our assembly-level debug-
ger for support.

The most common optimizer bug is
caused by memory-mapped I/0. Consid-
er an [/O device memory-mapped at ad-
dress data_port. The functionin Listing 4
waits for ready status, writes a sequence
of characters to the device, then returns
the new ready status to the caller.

An optimizer could just have a ball
with this. First, it might consider that the
while loop was a redundant read of the
same address and replace it with a single
read of the location. Next, it might deter-
mine that there was nothing to do in the
body of the while anyway and decide that
the entire while statement wasn’t even
needed. It would probably assume that
the A and C assigned to the address were
dead stores and replace them with the sin-
gle assignment *data_port = ‘K". As for

S

Global variables are
like salt: they
should be used
sparingly lest they
spoil the stew. They
often cause
problems that
surface during
integration.

WRITING MICROCODE
ISN'T CHILD'S PLAY. ..

The speed and flexibility
available from microcode architec-
tures carry a price which must be
paid by designers—complexity. But
even complexity can be moderated
with the right tools, and HILEVEL
has them.

We've designed an array of
microcode development systems
and software to suit projects
ranging from simple device con-
trollers to complex real-time radar
Processors.

Write your programs in C using
our new, reconfigurable cross-
compiler, or use our meta-assembler

“.\

©Copyright 1988, HILEVEL Technology, Ine.

to write time-critical programs in
assembly code. Modules from either
can be linked together, and there is
a comprehensive source code
editor and disassembler to simplify
integration and debugging.

To support your hardware, we
offer the only control-store
emulator with memory in its pods.
This dramatically improves access
times. But more important, the
memory configuration is deter-
mined in software. Now you can
use this system for a variety of
projects, with control stores up to
512 bits x 64K, without replacing
pods or other hardware.

You can monitor all critical
activity up to 256 bits at full speed,
using the logic state analyzer in the
development system. And, our per-
formance measurement features

But We Just Made It
A Whole Lot Easier!

will even help you find ways of
improving your design.

Don't make your project more
difficull than it has to be. Call
HILEVEL today and let us show
you how writing microcode just
became easier!

DIAL TOLL FREE:
1-800-HILEVEL
In California, 1-800-541-ASIC

At The Leading Edge
Of Microcode Development

31 Technology Drive
Irvine, CA 92718
(714) 727-2100

FOR LITERATURE CIRCLE #219 ON READER SERVICE CARD
FOR A DEMONSTRATION CIRCLE #220 ON READER SERVICE CARD

Debugging
Embedded G

the return, it might assume that the last
thing written to the address, a K, should
still be there and simply return K instead
of reading the status. Now the code, if
represented as C source, looks like this:

int sendack()
|
~ extern char *data_port;
*data_port = ‘K’;
return{(int) (K’));
}
where *data_port is the address of the
device.

Because optimizers may rearrange
the code to minimize computation, the
only safe way to avoid optimizer errors
when dealing with memory-mapped 1/0
is to compile the driver with optimization
turned off. This practice is usually safe
but in special situations will cause bugs.
When optimizing the function in Listing
5, for example, an optimizer might make
two assumptions: that the ratio x/y could
be done one time, and hence calculated
before the loop, and that the multiply op-

eration in the array index computation
i*4 could be avoided if the loop were writ-
ten differently. The optimizer may pro-
duce something equivalent to Listing 6.
The function now has two bugs! First,
the loop will never terminate because i is
an unsigned character and can’t reach
256; second, a divide error will occur if
y==0. Some compiler optimizers are smart
enough to detect these situations and
avoid producing code with these bugs.

SUGGESTIONS FOR
WRITING BETTER C
he quickest way to debug a pro-
I gram is to write a program that
has no bugs. Software that’s
modular and nicely layered will usually
have fewer integration bugs. Here are
some suggestions for producing code with
a minimum of problems.

= Be extremely careful when using
pointers; uninitialized-pointer bugs and
boundary bugs can be very time consum-
ing to correct.

B Look for typematch bugs by using
lint or other utilities, or simply do a “pa-
perdebug” to check each function call for
proper argument and return types.

m Be careful when using macros, es-
pecially those containing parameter sub-
stitutions. Capitalizing all macro names
can serve as a reminder that they’re mac-
ros, not function calls.

m Use parentheses liberally to guar-
antee associativity.

m Think about portability while writ-

ing code. If necessary, include a header
file containing typedefs for basic types
(BYTE, WORD, etc.), then use these instead of
char and int. Programs can then be ported
to another machine or compiler by modi-
fying the typedefs in the header file.

m Use casting when converting types;
don’t expect the compiler to do it for you.

= Avoid global variables.

B Use header files for function proto-
typing and argument definition.

® Use return codes for modules that
interface with each other.

m Above all, design the tests to exer-
cise all branches in the program. Include
tests for boundary conditions, especially
for code using pointers. If possible, keepa
test suite for future use, should the mod-
ule ever be modified or ported to another
environment.

Writing software is a complicated and
tedious puzzle. Even with a concerted ef-
fort by the programmer, it’s nearly im-
possible to produce a nontrivial program
that’s bug-free the first time. Knowing
the potential causes of bugs allows us to
adopt disciplines to minimize their occur-
rence and guides our efforts to stabilize,
localize, and correct them.

Robin Knoke cofounded Applied Micro-
systems Corp., Redmond, Wash. He's
currently involved in the specification
and design of productivity tools for cre-
ating and debugging embedded systems
software.

Listing 4
Code containing an optimizer bug caused
by memory-mapped 1/0.

int sendack()

/* address of device */
extern char *data_port:
while(*data_port = 0)
/* wait here for “ready’ status */

/* send "ACK" and sequence */
*data_port = A"
*data_port = “C":
*data_port = ‘K':

/* return status to caller */
return((int)(*data_port)):

Listing 5

An optimizer might make incorrect
assumptions regarding x/yand i*4.
Tloat array[zsﬁ]:

calcarray(x.y)

Tloat x.y:

unsigned char 1i:
/* put ratio in every 4th cell in array =/
for (i=0: it64: i+)

if (y 1= 0)
array[i*4] = (x/y):

36 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

Listing 6

A possible result of optimization of the
Listing 5 code: an endless loop and a
divide error.

float array[256]:

calcarray(x.y)

Tloat x.y:

unsigned char i;

register float tmp:

tmp = x/y;

/* put ratio in every 4th cell in array */
for (1=0: 11256; i:=d)

if (y 1= 0)
array[i] = tmp;

For the Ultimate in Embedded Systems Programmihg.

DEMO Debug Debug Debug Debug Debug
F“EE E" Remote DSD87 is the best source debugger for embedded de-
“_AB" velopment and the only product offering high performance and

A“A advanced software In Circuit Emulator capabilities. This package

and your compiler form a complete solution for the development
of embedded programs. Order now and receive a FREE copy of
Native DSD87, a $125 value.

Remote DSD87 (supports both Microsoftand Turbo C). .. $395
Remote DSD87 OMEF (includes Intel OMFsupport) $795

Link Link Link Link Link Link Link Link
ROM-Link is the first integrated link and locate utility to directly
generate COM, EXE, SYS, HEX, or Intel OMF files. The only linker
ever guaranteed faster than any present or future competitors.
Supports Microsoft debugging information. Receive a FREE
librarian and cross reference utility with your order!

R Soft Advances

10811 Washington Bl Ste. 205 e Culver City, CA90232 » (213} 5597015

CIRCLE #221 ON READER SERVICE CARD

Embedded C Debugging.

We have it now for Z80 and HD64180 family microprocessors! Z-World C and Z-World's Remote
Debugger make it easy to utilize C, or C mixed with assembly language, for programming embedded
systems. We have created a C language programming system designed for the practical microproces-
| sor engineer. We do give you the library source. We don't change all the names between the C source
| level and the assembly language level. We do support high-speed, IEEE format floating point. You

| can mix in assembly language and you can easily access all variables from that assembly code. Z-
World C is only $495.00 and it comes with an unconditional, 100%, 30-day, money-back guarantee.
The Remote Debugger is $195.00.

ke v Need Hardware Aids?
S EEa gL o ey QOur ic80 in-circuit emulator
BCOITHS ltoaslDd TIEE 3. lielmA -
= s i makes it easy to do source level
- Al S el C debugging on your Z80 or
3061 L19.34415 call 4630 alomy. ;:; [l Dﬁ-l' l 80 tafgef. On]_\ 5995.00.
3044 1004 34 21,7000 £.1¢ oaxs »
3347 122,844 all 9T ll=g 402 Tdivedd Ollr SBC] 0() HD()“' l 3(] Slngle
R fwmme DOArd computer and prototyping ic80 In-circuit Emulator
®ormimmin " lcosm platform provides a quick and low-cost development system for
F e f " i34 ~=420. 8 . 3.00 — - . -
n T = =y cmskssn §705 (). Please call for complete information.
1 3 W04 311 /—// p
re LA 755 £z | et e
1 sal ”/4;1’//’/
EELNE et e RNy B e Z-WOl'ld, 1772 Picasso Ave, Davis, CA 95616
] J
Typical Debugging Screen as seen on an (916) 753-3722 rax: 7535141

IBM-PC while connected to a remote target. "Z80 Family Specialists”

CIRCLE #222 ON READER SERVICE CARD

merican industry is in-
creasingly looking to
automation as a means of
improving productivity
and reducing cost. Full-
time operation, lower tolerance for over-
head, and increasingly stringent preci-
sion and cleanliness requirements have
led to a wide variety of approaches to ro-
bot construction. While many of these
approaches are incompatible with one
another and divergent in design, some
features are common to all robots.

These baseline standards accommo-
date the features that are usually desired
or required in an independently acting ro-
bot. For these features to be properly im-
plemented in the robot, the hardware and
software must be integrated at a very ear-
ly stage.

Too many design teams have made the
mistake of assuming that either hard-
ware or software solutions can address all
the requirements of the system. In the
first case, a machine may be hard-wired
to be good at its particular task but in-
capable of adapting to new requirements.
In the second, control resides in software
run as an external computer, maximizing
flexibility at the expense of performance
and feedback bandwidth.

The embedded CPU approach re-
solves the dilemma by allowing specific
aspects of a robot to be run independent
of a host computer, combining the power
of a hard-wired robot with the flexibility
of a software-controlled robot. The appli-
cation of this approach to motion-control
algorithms and basic control systems is of
particular interest to systems designers
and is covered here using a simple robot
as an example. This robot isn't particu-
larly complex but provides a good demon-
stration platform without requiring us to

BYBOBZORICH

Animai
the Robot

mage Bank

o
5
3

38 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

go into the specifics of a particular
system.

The software outlined here is modular
and is easily implemented and main-
tained in any number of languages. [t can
also be adapted for use in a single-CPU
system with the robot control running as
a subprocess. Pseudocode for the soft-
ware is presented ina form similar to Pas-
cal, allowing the algorithms to be devel-
oped into the source language of your

choice.

Software should be
modular, with
simple routines
defined,
debugged, and

DT

.......

combined as

necessary.

Our robot has a broad range of fea-
tures common to most of the machines on
the market today. It has the ability to
move fairly freely in three dimensions
and can easily be fitted with a variety of
hand mechanisms for greater flexibility.
1t’s controlled by an embedded computer
system, allowing it to run independently
from the host computer. This embedded
computer also allows the rabot to be self-
diagnosing, with some capacity to main-
tain itself during normal operation.

In the process of building first the
primitive software routines, then the

composite motion algorithm, we’ll design
such features as self-diagnostics and self-
maintenance capabilities, feedback-
control loops, and exception handling
into the robot. The exception code should
anticipate as many aspects of potential
situations as possible to prevent damage.
Warning: Murphy must have known
about automatons when he formulated
his law; robots will continually surprise
and amaze you with their behavior.

SOFTWARE SETUP
ROUTINES

ystem software for the robot
S should be designed in a manage-

able, modular format. The basic
routines for simple motions should be de-
termined and written, then combined as
necessary. These basic routines include
axis acceleration, deceleration, and
steady-state motion operation.

After each motion is defined, the larg-
er, more complex motions can be formed.
These composite motions perform such
routines as exception handling and pick-
ing up, moving, and placing the cargo.
Finally, these are all integrated to form a
single, smooth operation.

The first primitive routine we’ll need is
a motion initiation sequence (see the
pseudocode in Listing 1). This motion
can take place in any of the three axes and
can involve rotation of one of the axes.
The axis of travel is specified first, fol-
lowed by the direction in which the robot
must travel. If the motor controller is be-
ing controlled directly by the main CPU,
the software must know which direction
the motor travels in as a function of volt-
age applied. While this may sound trivial,
more than one robot has crashed or ex-
perienced development slowdowns due to
details such as these.

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 39

Listing 1 :
Axis acceleration control routine.
Procedure Start_ Axis Motion;

Begin

A . z]
Verify A1l Previous Errors Corrected;
{ x-, y-. or z-axis or z-rotation}
Specify Axis of Control:
Specify Direction of Travel;

Verify Current Location ot Robot:

Get Yelocity & Acceleration from Table/File;
Send_Yelocity & Acceleration ta Motor_Controller:
Send_“Go™_ta Motor_Controller:

e "ls‘ T

Stability

{ n
1 mu5t be mi;:g:rrent_!elucity (Set Velocity do | Accelerating | |
1 =g= Watch_for_Encoder_Signal: { This section can be |
verltleu When Encoder_Signal seen { used as a procedure |
= Begin { (e.g.. Check Yelocity) |}
during the Start. Tiser:
Watch_for_Next_Encoder_Signal;
We'll assume that the positive direc- aGGEIGra“on When Encoder_Signal seen
tions of motion are from the pickup point Begin
to the target on the x-axis and from the x- i i Stop_Timer:
axis toward the target on the y-axis. The rou“ne- Thls could Calculate Current Yelocity;
positive z-axis is up, while the positive di- i“volve a range ﬂf calculate Current Acceleration:
rection of rotation is counterclockwise. Yerify Correct Velocity & Acceleration:
Note the use of the “right-hand rule” in = It Velocity or Acceleration incorrect
defining the coordinate system. SImple and complex Begin i
After the direction and axis of travel ez 1f Problem is Serious then
have been defined, we need to send the pﬂs“mn SENnsors. Invoke Exception Handler
motor controller the velocity and accel- Else
eration values. These numbers must be _ Make_Adjustments as Required:
verified for performance and can only be £nd:
characterized depending on the applica- consequences if the robot is moved while End:
tion. Certain robots move much faster in an illegal state. End-
than others depending on the load, con- When the robot is in the correct state, End-
struction materials, etc. These data the motor controller is sent the go signal. When Current Yelocity = Set Velocity
points should be stored in data tablesand ~ There may be a variety of things to check Begin
used to determine the optimum rates of at this point depending on the sensor set- Check_Velocity;
travel. If you have a particularly powerful ~ up. If there’s a current-monitoring de- Check_System Status:
CPU, appropriate sensors, extra RAM vice, we may wish to observe it for jerky If (Velocity OX and Status OK) then
storage, and some good programmers, motion or jamming of the axis in the di- Leave Routine
you can make the system self-analyzing rection of travel. The voltage and current Else
and able to modify its velocity and accel- driving the motor should be changing at a Invoke_Exception Handler:
eration files occasionally. smooth, consistent rate until the robot End:

Inany event, these values must be pre-
pared for transfer to the motor controller.
The data shouldn’t be sent until all other
setup items are complete, so until that
time either the data should be stored or
the “go” signal withheld, depending on
the type of controller. We’ll assume that
the controller has a separate go signal,
allowing us to transmit the velocity and
acceleration directly to the controller.
This usually involves sending a reset sig-
nal to the motor controller to stop all cur-
rent activity. If activity is detected or the
robot’s location is improper, we must go
to the exception-handling routines before
executing the move. There may be dire

reaches cruising velocity.

During acceleration, the CPU must
count the number of steps seen by the
optical encoder on the servo motor to con-
trol the exact position of the robot and
keep track of the acceleration rate. Ac-
celeration is easily checked by setting a
timer, counting a certain (small) number
of steps from the optical encoder, and
comparing that against the time elapsed.
Additional effort may be required if the
optical encoder has no method of deter-
mining the direction of travel.

One last point that could be important
when moving very heavy or very light
loads is that the cargo stability must be

40 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

End;

verified during the acceleration routine.
This could involve a range of sensors from
simple switches for confirming the posi-
tion of the load to complex accelerom-
eters and laser-positioning systems that
measure all the load characteristics. If
problems are observed in the acceleration
phase (a fairly common occurrence), the
software must flag this and set lower ac-

Listing 2 Listing 3 Listing 4

Yerify Current Location of Robot:
Yerify Current Yelocity of Robot:
Get_Yelocity from Table:
Compare Expected Velocity ta Real Velocity:
Adjust_Robot Yelocity as Required:
Repeat
Check_Yelocity pf Robot;
Check_Status _of Robot:

If (Velocity Incorrect or Status Shows Problem) then

Begin
Check_Seriousness of Problem:
If Problem Serious then
Begin
Invoke_Exception Handler:
Exit Procedure:
End
Else
Adjust_Robot & Reset Flags:
End:
Until Robot Has Reached Deceleration Point:
End;

SRR

The exception-
handling routines
must have high
priority in any
multiprocessing
operating system’s
scheduling process.

celeration values. Like it or not, Newton’s
laws are here to stay, and momentum and
inertia must be considered.

Any problems discovered during ac-
celeration must cause control to go to the
exception-handling routines; a failure or
problem at this point may be amplified
later. However, since the motion has al-
ready been started, it’s up to the excep-

Yerify Current Location of Robot:

Get Yelocity & Deceleration from Table/File:
Send Yelocity & Deceleration ta Motor_Controller;
Send_~6o™_ta Motor_Controller;

While Current Yelocity) Set Velocity do | Decelerating

Begin
Watch for_Encoder_Signal: | This section can be
When Encoder_Signal seen | used as a procedure
Begin { (e.g.. Check Velocity)
Start Timer:
Watch_for_Next Encoder_Signal:
When Encoder_Signal seen
Begin
Stop_Timer:
Calculate Current Yelocity:
Calculate Current Deceleration:
Yerify Correct Yelocity & Deceleration:
If Velocity or Deceleration incorrect
Begin
If Problem is Serious then
Invoke_Exception Handler
Else
Make_Adjustments as Required:
End:
End;
End:
End:
¥hen Current Yelocity = Set Velocity
Begin
Checic Yelocity:
Check_System_Status:
If (Velocity 0K and Status DX) then
Leave Routine
Else
Invoke Exception Handler:
End:
End:

tion handler to decide whether to contin-
ue the action, compensate for the prob-
lem, or abort the process. For instance, a
rapid, severe rise in current draw, associ-
ated with a sudden slowing of the accel-
eration rate, indicates a mechanical
problem that may necessitate immediate
shutdown. The discovery of a miscount in
the number of steps taken to reach a cer-

Axis steady-state motion control routine. Axis deceleration control routine. Example of composite motion.
Procedure Continue Axis Motion; Procedure Slow_Axis Motion; Procedure Move From Picklp Ta Jarget:
Begin Begin Begin
Verify A1l Previous Frrors Corrected: Yerify All Previous Errors Corrected: Home_Robot Positions:
{ X-, ¥-. or z-axis or z-rutation} { X-, y-. or z-axis or z-rotation} Select 7 Axis:
Specify Axis of Control: Specify Axis of Control; Rotate_ta Correct Angle:
Specify Direction of Travel: Yerify Axis R Direction of Yravel; Set 7 Axis Height ta Fit Uinder Cargo:

Select Y Axis;
Extend Y Axis:
Verify Hand is Under Cargo:
Select 7 Axis:

| Raise Carga on 7 Axds;
Select Y Axis:
Retract ¥ Axis:
Yerify Carga Properly loaded:
Select Z Axis:
Rotate ta Jransport Angle:
Select X Axis:
Accelerate N Axis:
MNove Robot_ta Jransfer_Position;
Stop X_Axis:
Select 7 Aris:
Rotate_to Placement Position;
Adjust Height to Target Placement Height:
Select Y Axis:
Extend ¥ Axis:
Yerify Cargo Dver Target:
Select 7 Axis:
Lower_Carga_onta Target Platform:
Release Hand from Cargo:

tain point, on the other hand, may simply
require that the robot move to a new posi-
tion at some point in its travels.

The exception routines must have a
very high priority in the scheduling pro-
cess of any multiprocessing operating
system. We'll assume that error handling
will control system resources from the
moment of discovery.

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 41

Animating

the Robotr -

STEADY-STATE
MOTION

fter the robot has successfully
A reached the velocity setpoint,

program control goes toanother
of the primitive routines—steady-state
operation (see Listing 2). Since most
problems occur at the beginning or end of
the trip—during acceleration or deceler-
ation—this phase should be relatively un-
eventful unless something breaks or gets
in the way of the robot.

However, there’s always work todo. In
most cases, it involves constantly analyz-
ing and verifying the current position and
velocity. If external devices measure loca-
tion, they should be referenced against
the expected position as determined by
the optical encoder counter. If any dis-
crepancies are detected, the routine must
determine their magnitude. If they're mi-
nor, the routine makes the required ad-
justments and goes on about its business.
Major discrepancies require that control
be passed to the exception-handling
routines.

We need to monitor constantly for
sudden stops, contact with objects, and
cyclic changes in velocities or other pa-
rameters. Contact with objects may be
sensed directly with contact circuitry or
indirectly by observing locations of opti-

’ _

Arm

Pickup Location

cal encoders and checking for relative
changes. Cyclic changes may point out
areas of friction or stress in the robot
drive mechanism or heavy cargos swing-
ing around, possibly indicating excessive
acceleration or speed. If cyclic changes
are seen, the host computer or operator
should be notified.

We also want to watch for contact
with limit switches, endpoint switches or
detectors, and overtravel switches. If a
limit or endpoint switch is triggered, pro-
gram control should go to the decelera-
tion routine; if a problem is discovered,
control should pass to the exception-
handling routines.

ROBOT
DEGELERATION

inally, when all systems indicate
F that the cargo is near its destina-

tion, the routine enters the decel-
eration phase. This phase is initiated by
sending the motor controller the signal to
decelerate (or, in some controllers, accel-
erate with a negative value) with an ulti-
mate velocity of zero, followed by a go

Target Location

z-axis

/x'-axis
y-axis

Figure 1
The basic robot.

signal (see Listing 3). The CPU must
then verify deceleration rates and exact
position using timers and encoders, as
outlined earlier for the acceleration
phase. This action verifies that the posi-
tion of the robot on that axis is correct as
specified.

One of the key functions of the decel-
eration phase is to anticipate the point at
which the robot must initiate the next ac-
tion. This requires that the current pa-
rameters be evaluated in real time, espe-
cially if the system has self-diagnostic
abilities. If the CPU realigns the robot in
real time, a degree of flexibility should be
built into the hardware for the adjust-
ment tables (for example, the point of ini-
tiation into the deceleration phase). This
can be accomplished through the use of
EEPROMs or nonvolatile RAM chips.

It’s quite easy to be slightly off-target
when the robot stops, even after all our
attempts to prevent problems. There’s a
certain amount of hysteresis in real de-
vices, especially belt or chain drives. Be-
cause set screws become loose and other
unpredictable and unpreventable events

Flgure 2 Central Robat CPU
Gomputer system
block diagram.
Notor
Host Controller Interrupt
Interface Interface D/A A/D Yector Systeam
RS-232 RS-232 Output Input Control Facilities
RAM
ROM (EEPROM)
——————————Timers
Counters
Motor
Controlier Feedback
I_ 1Im:errw’cs
Power Analog Feedback
z-axis Analog Output
y-axis

. z-axis rotate
x-axis

42 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

occur that cause deviations, a routine
should be added to the code to handle
such problems. Even though this adjust-
ment routine may not be necessary when
the robot is brand new, we’ll be happy to
have the flexibility as these slight devi-
ations occur.

One way to minimize the impact of
deviations is to use the setpoint or end-
point as the prime reference to the desired
final location for the robot. In most cases,
the closer to the actual stop point the ref-
erence locator is placed, the more accu-
rate the actual position will be. For maxi-
mum precision, both the deceleration
point and the actual endpoint should be
referenced by the CPU, with discrepan-
ciesadjusted by moving along the axis the
required distance.

While it’s possible to include these
routines only in the exception handler,
self-correcting software should have the
adjustment routines built into or refer-
enced by the deceleration routines to al-
low the robot to come as close as possible
to the desired endpoint.

If any exceptions are observed during
deceleration, the program should contin-
ue with the stopping procedure. If the
problem reaches crisis proportions, of
course, control should be transferred to
an exception routine. Sudden changes in
molion during this phase could cause a
number of problems, so continuity is
probably the best goal.

COMPOSITE
SOFTWARE ROUTINES

ow that we've defined the ma-
N jor functions the software must

perform, we can start putting
the pieces together to form an integrated
system. In constructing integrated mo-
tions, we’ll use a modular design struc-
ture to keep the program clean and en-
sure that the integration routines are
relatively easy to construct.

In almost all cases, the composite rou-
tines consist entirely of the basic steps
outlined here. Each axis can be controlled
by the same basic routine. Rotational
motion is similar in concept, though
somewhat different in orientation.

As an example of composite motion,
let’s consider the case of moving an object
froma stand toa target location (see List-
ing 4). The routine starts by resetting the
robot to verify that it’s in the correct
start-up position. This involves moving

axes to the home, or zero-state, condition
(all axes at 0). When the robot reaches
the reference point, the CPU is notified
and the robot is reset.

The robot must then get into the cor-
rect position to pick up the object. First,
the x-axis is adjusted so that the bulk of
the robot is in the correct position for ac-
tivity. Next, the appropriate hand angle is
determined and the hand rotated to that
position. The z-axis is adjusted to verify
that the hand will slide under the cargo,
and the y-axis is extended until it’s under
the cargo.

The robot then raises the cargo off its
stand by moving the z-axis upward. The
z-axis should raise only high enough to
allow the cargo to move; raising it too
high increases the likelihood of damage.
If necessary, the y-axis should retract to
place the cargo over the robot’s center of
gravity. This is especially important when
the robot has tocarry heavy loads or when
it has insufficient space available for
counterbalancing.

The arm may need
to release its cargo
very precisely on
the target platform
to avoid imbalances.

Note that in each of these cases, the
sequence of events is essentially the same:

1. Select axis.

2. Verify current location on axis.

3. Calculate distance to travel and ap-
propriate acceleration rates.

4. Accelerate axis.

5. Move to correct location.

6. Decelerate axis.

7. Verify endpoint was reached; adjust
if required.

8. Continue to next action.

The second motion in the composite
routine is from the pickup point to the
target point. We must verify that the y-
axis has moved so that the cargo is prop-
erly placed for transport and that the z-

axis has the cargo properly rotated. We
then accelerate the x-axis to the main
transport speed and traverse the x-axis,
observing orientation, location, velocity,
and other parameters.

The system must determine the point
at which deceleration should begin.
When that point is reached, the decelera-
tion routine is initiated to bring the robot
to a stop. The stopping point on the x-axis

Listing 5
Exception-handling routine.
Procedure Exception Handler:
Begin
Read_Current CPU Status:
Read Current Robot Status:
Check_for_Emergency Situations: | e.g.. impact |
If Emergency then
Begin
Execute Esergency Action: | may be esergency stop |
Return_Data to Host Computer: !
Exit or Halt:
End:
Prioritize Probless Found:
Repeat
Place_Problem in Category:
Check_for_Common_Categories:
Based_on_Common Traits Choose Potential Problem:
Based_on_Problem Determine Adjustment ta Make:
Execute_Adjustment ta Robot:
Check_Effectiveness_pf Adjustment:
If Adjustment Worked then

Begin
Reset_Errors:

is then adjusted and the cargo is rotated
until it’s aligned for placement on the z-
axis.

The final portion of the composite mo-
tion involves placing the cargo on the tar-
get platform. This action can be quite
critical, as the object may have to be
placed very precisely to avoid imbalances
and other problems. This section must
first verify that the cargo is correctly ori-
ented for placement. The rotation around
the z-axis should be checked, followed by
a check of the x-axis. (This should have

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 43

[s i s s ol
Animating
the Robot

been checked at the end of the x-axis mo-
tion section but should be redone at this
point for good measure.)

The height of the cargo on the z-axis
must then be adjusted to the proper
height for placing the cargo on the target.
As in the pickup section, it's important
not to lift the object too high, as the poten-
tial for damage from an accident in-
creases as a function of the distance the
object falls. When “landing” the robot,
assume the worst-case scenario; a signifi-
cant proportion of problems with this
type of transport robot occur at this point.

We now extend the y-axis out from the
robot until the cargois positioned over the
landing target. Assuming that no prob-
lems have occurred, we can lower the car-
goalong the z-axis until it’s aligned prop-
erly on the target. The next step is to con-
tinue lowering the hand until it’s freed
from the cargo. We can then retract the
y-axis and return all the axes to their
home positions.

EXGCEPTION
HANDLING

nevitably, there will be times when
I the robot seems to have a mind of its

own and wanders into territory for-
bidden toit. If something is forbidden, it’s
for a good reason—either the robot, the
cargo, the operator, or something nearby
would be damaged otherwise. Other con-
ditions can be hazardous to the robot as
well; for example, friction on the axis rods
can cause the motors to pull excess power,
which could cause overheating problems.

Another example is the possibility of a

slight change in the shape or tension of
various parts over time. This could create
warpage or areas of contact between the
cargo and the surroundings, possibly
causing damage to the cargo or exacer-
bating the warpage problem. To detect
these problems and minimize their im-
pact, the software must include excep-
tion-handling code (such as that given in
Listing 5) that responds appropriately to
a given situation.

This section of the program should be
as unified as possible and built as a sepa-
rate module, not spread throughout the
primitive routines. This is because many
of the routines are common toall facets of
robot operation and because there are
likely to be frequent changes to these rou-
tines as development progresses.

The exception code is called whenever
a major problem is sensed in the robot.
The level you wish to call “major” may
vary depending on your application butin
most cases will involve significant
changes in parameters (expected vs. ac-
tual positions, velocities, etc.), contact
with obstacles, overheating or drawing
excessive current, or activation of a limit
switch. The primary routine should send
information to the exception routines to
identify what has happened. This can in-
volve looking at the interrupt vectors or
examining the registers or memory ad-
dresses that contain information regard-
ing the nature of the problem. The prima-
ry routine leaves the status untouched so
the exception handler can determine
what happened.

If a cyclic error or
other subtle
problem is noted,
this information
should be sent to
the host computer
immediately.

After the exception handler has gath-
ered the required information, the next
step is to assign a priority to the problem.
This is especially important if, as is likely
to happen, a number of problems are
identified simultaneously. In determin-
ing the seriousness of the incident, the
routine should test all available sensor in-
puts to verify current conditions and test
for commonalities. In most cases, this
must be done quickly. Each priority code
generated should be specific to a particu-
lar type of failure so that appropriate re-
actions can be formulated.

44 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

After the software has identified the
problem and verified the consequences,
the CPU should look through a table of
known or expected symptoms, identify
both the problem and the probable sys-
tem failure, and determine the action to
be taken. Based on the problem identi-
fied, the potential reactions can fall intoa
number of broad areas:

= Simple motor voltage adjustments
in the case of improper velocities.

B Adjustment of reference points ne-
cessitated by a slight mechanical offset.

® Resets or rehomes for each axis.

® Entry into deceleration phase.

®m Entry into sequence to reverse
direction.

® Emergency stop.

® Emergency power-down.

After the system has reacted to the
problem, it must observe the final status
of the robot. In many cases, operator in-
tervention is necessary to tell the robot
whether to continue moving, go home, or
just wait and donothing. Inany event, the
robot CPU then reports the status of the
robot to the host and adjusts the align-
ment tables or other setpoint files in
EEPROM or nonvolatile RAM. If a cy-
clicerror or other subtle problemis noted,
this information should be sent to the host
computer as soon as the problem is
discovered.

SELF-CONTROLLING
AUTOMATION

ndustry continues to demand in-
I creasing quality and productivity

from its factories and is the driving
force behind the push to automation. As
this trend continues, the techniques of ro-
botics control and embedded indepen-
dent CPU control become increasingly
important. Such issues as maintainabil-
ity, reliability, and ease of upgrades are of
major consequence in an industrial robot;
the greater the robot’s ability to be self-
controlling, the better. For all these attri-
butes to be obtained, the robot must be
developed as an integrated system that
will meet industry’s needs today and in
the future.

Bob Zorich is a senior engineer at a ma-
jor semiconductor manufacturing com-
pany and president of Acro Technology.

How To Win
i 108 RERETIING o i

applications can be a challenging dramatically improve yvour
game. produz:tmt,\ and creativity.

Dealing with a separate compﬂez; Oc am Fact is, polvFORTH is far and away the
assembler; linker, loader, executive most consistent, effective way to go from
debugger, each with its own procedm'es, can reallyslowyou “design” to “done”. Whether you do it yourself or have us

down. Just think of all the time you spend accessing files
and conversing with all those tools, plus the time waiting
for them to run.

There’s a better solution—polyFORTH® It's a complete,
fully integrated, interactive programming environment
that's designed specifically for realtime applications. It
supports single-chip microprocessors, 16- and 32-bit
processors, DSP processors, and minis like the VAX.

The editor, compiler, assembler and debugger are always
resident and ready to use. There’s only one program to
learn and no separate procedures to bog vou down. You can
move directly from thinking and editing to testing, with no

design a turnkey sxslemfnrwu, expect to finish vour real-time
embedded applications 4 to 10 times faster than ever before.

After all, isn’t that the name of the game?

Call 1-800-55-FORTH today for your free-for-the-asking

“RealTime Clock Game” poster and brochure with real-life

programming solutions from FORTH.

FORTH, Inc., 111 N. Sepulveda Blvd., Manhatian Beach,
CA 90266, 1-800-55-FORTH, (213) 372-8493

VAKX is2 tradessei of Digital Egummment Corporation polyFORTH s a tradesark of FORTH, e

%FORTH,IM.

|

3
ad g—‘:{ q,\\\‘f’///_ g)h\\l

BYRICK NARO

o you've decided your next de-

sign requires the throughput

of a 16-bit controller. Thisisa

golden opportunity for the

software development team
assigned to the project to wield some clout
and influence the choice of microcon-
troller. Selecting one of the popular 8086-
compatible Intel or NEC processors can
lower the cost of software development
and have a significant impact on the proj-
ect’s bottom line.

The reason is simple: powerful soft-
ware development tools are available for
PCs in a wide variety of languages. If you
forget for the moment about microcon-
trollers and instead focus your attention
on the PC software development market-
place, you'll find an exceptionally com-
petitive environment for software devel-
opment tools. Microsoft, Borland, and
dozens of other companies are constantly
trying to gain the advantage by providing
fast compilers that produce highly opti-
mized code and that come with an im-
pressive set of run-time libraries and util-
ities. A complete kit of the most powerful
tools costs just a few hundred dollars, al-
lowing each team member to have a set of
tools and documentation.

Designs based on Intel 8086-compati-
ble microcontrollers (Intel 8086,/88 and
80186/188; NEC V20/V30, V40/V30,
V33, and V25/V35) can take advantage
of powerful PC-based tools from the carly
design stages through the production re-
lease of the software. Popular ROMable
assemblers include Microsoft’s MASM
and SLR Systems” OPTASM; ROM-
< able compilers include Microsoft C,
£ Turbo C, Lattice C, Microsoft Pascal,
< Manx C, and JPI Modula-2.

These tools tremendously improve
productivity by allowing short compile/

ank

Daon Carn

link turnaround times and the use of pop-
ular run-time library routines. Even bet-
ter, they let the software development
team prototype and test algorithm design
and preliminary versions of software on
standard-issue PCs long before the first
hardware prototypes are available. This
feature alone greatly reduces the time re-
quired to perform the final hardware/
software integration. This becomes in-
creasingly critical as more and more
hardware designs are simulated rather
than prototyped.

While the application of PC software
development tools to the embedded sys-
tem environment is useful, it’s not with-
out problems. As compiler vendors have
pushed to distinguish themselves from
one another in the marketplace, the com-
patibility that once existed among differ-
ent compilers has been lost. While this
trend is beneficial for PC users, it does
create problems when multiple tools are
used in a ROM environment.

But the biggest potential downside to
these tools is also the reason they’re so
popular to begin with—they’re designed
specifically for the development of PC
applications. It seems that embedded ap-
plications take a back seat when it comes
to obtaining vendor support. For this rea-
son, it’s important that you become an
expert in the ROM compatibility issues
of a particular compiler or linker.

GETTING STARTED
o develop an embedded applica-
I tion, we’ll need an assembler,
compiler, linker, and locator.
Run-time libraries are time-savers and
should be used whenever possible. While
other tools may be useful, these five com-

ponents are critical. They must work to-
gether seamlessly to get us from program

Selecting an 8086-
compatible
processor from NEC
or Intel can lower
the cost and pain of
software
development and
have a significant
impact on the
hottom line...if you
know how to adapt
native tools to
development of
ROMable code.

source 10 an executable, binary-format
program suitable for a PROM program-
mer or in-circuit emulator.

The application can usually be devel-
oped with little attention paid to whether
or not the final code will execute from
ROM. The important considerations
during initial development are the mem-
ory model 1o be used, the run-time library

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 47

routines, and any restrictions that the
hardware will impose on the application
address space.

Rather than explain the process in
theoretical terms, I'll use a simple appli-
cation to demonstrate the process. As-
sume we’ve been given the task of build-
ing the electronic egg timer shown in
Figure 1. Based on discussions with the
hardware department, we know the unit
has a start switch, an LED display, and a
small buzzer. At the zero count, the buzz-
eris to provide an audio cue to remove the
eggs from the water. The tools we’ll use in
this example are MASM, Turbo C,and a
Borland linker. We’ll use a locate utility
to place the code properly in ROM.

Because the hardware prototype isn’t
available at this early stage, we can pro-
ceed Lo prototyping the software directly
on the PC. By properly partitioning the
software, we can use the PC hardware
(keyboard, display, and speaker) to emu-
late the hardware in our egg timer. Be-
cause the system-dependent code is mod-
ular, only the 1/O drivers for the start
switch, LED display, and buzzer will re-
quire modification when the time comes
to bring up the software on the prototype.

The egg timer is designed to run in an
endless loop until the start button is
pushed. When it detects the start event, it
writes the initial count to the display and
decrements the count for each elapsed
second. When the count reaches zero, the
speaker emits three beeps and the cycle
begins anew. Listing 1 shows the code
needed toimplement these specifications.

All that remains is to implement the
code that checks for the start signal, dis-
plays the time, measures the elapsed
time, and activates the buzzer. During
testing on the PC, run-time library rou-
tines that delay for a predetermined time,
cause a speaker to emit a beep, and wait
for a character from the keyboard are
used to simulate the egg timer hardware.
By using these functions, we’ll have much
of our egg timer code debugged and

Listing 1

Example of code needed to run egg timer.

while (1)
/* Wait for start switch to be depressed */
shile (start_depressed() == FALSE)

* Display the count continuously,
decrementing once per second */
write_LED_display{INITIAL__COUNT) -
for (i = INITIAL_COUNT: 1 0:)

delay(ONE_SECOWD) -
write__LED_display({--1i) :

* Beep three times *

for (1 =0: i ¢ BEEP_LINIT; is+)
beep() :

delay(BEEP__INTERVAL) :

ready for the prototype hardware.
Listing 2 provides an MS-DOS ver-
sion of these routines.

START-UP CODE

ith the prototype hardware
‘ " / available, new start-up code
for the compiler becomes a

necessity. ROM-based start-up code re-
ceives control following a reset. It sets up
the segment registers and stack, then ini-
tializes any data structures required by
the program. It may also initialize the

48 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

Figure |

A simple electronic egg timer.

4[]_/_]51@.'

start
Button

Microcontroller

SEE

B

Display

hardware and interrupt vectors, although
this can often be handled by a high-level-
language initialization routine.

Most compilers divide the program
data into two groups: DATA (initialized)
and BSS (uninitialized, or, more accurate-
ly, initialized to zero). Because C requires
that the former be initialized before
main() receives control, the start-up code
keeps a copy of the initialized data in
ROM and copies it to its final destination
in RAM. The BSSdata area can be initial-
ized by writing zeros to all locations.

Since a DOS linker is used, the start-
up code is also used to define the order of
segments in the .EXE file. In an MS-
DOS application, segments are contig-
uous; in an embedded application,
they’re found in the noncontiguous ad-
dress spaces of ROM, RAM, and I/O.
When the start-up code controls segment
order and classes in the .EXE file, related
segments are grouped automatically.

The start-up code also defines place-
holder segments to serve as handles for
extracting and moving unrelated seg-
ments. Locate utility code, for example,
copies the initialized data and places it in
a segment after the executable code.

LINKING
y default, MS-DOS linkers place
B the segments in the order in
which they're encountered in the
various object modules. By having the

Code and debug micro-
controllers in C without
ever leaving your PC

Now you can run, debug, and test Archimedes
Microcontroller C code right on your PC, and you
don't even need any prototype hardware. Combined
with Archimedes C, SimCASE allows you to speed
up software development. You can test-run your
software ideas before you even commit to a micro-
controller design. It’s like having a microcontroller
built into your PC.

You'll have every traditional debugging tool at
your fingertips, including trace, step and break-
points. So you ean fully debug microcontroller code
at the C source level. Of course, you can use
SimCASE to debug at the Assembly level too,
if necessary.

Speed up software development on all of
today’s most popular microcontrollers.
Archimedes Microcontroller C and SimCASE are
available for a wide variety of microcontrollers,
including: Motoralas 6301 and 68HC11, Intels 8051
and 8096/196, Zilog’s Z80/Z180, Hitachis 6301
and 64180.

Simulate and test your designs without
hardware. At the heart of SimCASE is the Micro-
controller Simulator Engine. Use it to simulate every
part of your chip on your PC. Then use the various
modules to control and analyze your simulation.

With the Input Stimulus Generator you can
simulate real-time I/0 intensive applications right
on your PC.

Then use the Performance Analysis Tool to get
the execution time of every block and line of code
and identify any performance bottlenecks in your
design. You can run this assessment for worst-case
seenarios, including hardware tolerances.

All before you even
commit to hardware. o

Get your free demo —m T ASH
diskette and see
SimCASE in action.
Getatasteofthefull — — —
speed and power of e
Archimedes Cand Sim- =
CASE. Order your free S o
demo diskette and product guide today by calling
1-800-338-1453. In California call 415-567-4010.

Archimedes Microcontroller C and SimCASE.
They set the standard by giving you fast, fully-
featured C compiling, C-source level debugging
and simulation of real-time microcontroller designs.

A Archimedes Software Inc.
2159 Union Street
San Francisco, CA M123
415-567-4010
800-338-1453
R AERES Arehrimmedes, Ambimmedes C, Memeontrolies C, and
R ”) o g FmCASE e tracieamurks of Archimedes Softwre, ne.

CIRCLE #223 ON READER SERVICE CARD

ROMi o
DOS Cs

start-up module declare the segments
ahead of the other object modules, we can
control the segment order and alignment
for the next stage—locating the execut-
able image in the target hardware ad-
dress space. Next, the locate utility will
need to tear apart the .EXE file using
information in the segment map.

Other than requiring us to specify the
start-up module first, the method we’ll
use to link our egg timer application is no
different from in an MS-DOS applica-
tion. Keep in mind that even if we didn’t
explicitly specify any run-time library
routines in the application, the appropri-
atelibraries maystill need to be searched.
Most compiler run-time libraries contain
a large number of helper routines used by
the compiler and by other run-time li-
brary routines. An example of these is a
routine that performs 32-bit integer
math but occupies too much space on a
16-bit processor.

The executable file is built using the
following linker command line:

tlink /m /c tc eggtimer, eggtimer, egg
timer, \tc\lib\cs

Don’t overlook the power of the ven-
dor’s run-time libraries. Many standard
run-time library routines require MS-
DOS, particularly for file I/O. Neverthe-
less, many important routines are ROM-
able and should be used; they're highly
optimized and will save precious develop-
ment time. For example, an application
can easily use string or memory functions
because they’re optimized for speed and
don’t rely on the presence of DOS.

Depending on the compiler, we can
also use search, sort, classification, and
conversion routines in an embedded ap-
plication. If the dynamic range of data in
an application requires the use of floating
point values, the floating-point emulation
and math run-time library routines can
also be used in place of an expensive nu-
METIC COProCessor.

Don’t overiook the
vendor’s run-time
libraries. Depending
on the compiler, you
can ROM string,
memory, search,
sort, classification,
and conversion
routines.

At last we're ready to prepare the
ROM s for our egg timer. To successfully
split the .EXE file, we need to supply in-
formation on the organization of the
hardware and address spaces using the
configuraticn file shown in Listing 3. The
locate utility uses the configuration file to
relocate the segments so that they match
the physical configuration of the target
system. The .EXE file contains both the
executable code and a header with relo-
cation pointers to segment fixups. Seg-
ment fixups are physical segment refer-

Listing 2

MS-DOS version of egg iimer routines.
sinclude {stdio.h)

#include {(conio.h)

=include {dos.h}

sdefine FALSE O

#define TRUE 1

adefine INITIAL_COUNT 2 * 60
adefine (ONE__SECOND 1000
=define BEEP_INTERYAL 300
sdefine BEEP_LIMIT 3

void write LED_ display{unsigned) :
void beep(void) :
int start__depressed(void] :

void main()

int 1

while (1)

/* Wait for start switch to be depressed */
shile (start_depressed{) = FALSE)

/* Display count continuously.
decrementing once per second */
write_LED_display{INITIAL _COUNT) :
for (i = INITIAL_COUNT; 1) D;)

delay(ONE_SECOND] -
write_LED_ display(—i) :

/* Beep three times */

50 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

for (1 = 0; 1 ¢ BEEP_LIMIT; i++) |
beep() :
delay(BEEP__INTERVAL) :

void write_LED_display(count)
unsigned count ;

/* Convert to minutes:seconds format
and display */
printf{“%u:%02u\r", count / 60. count % 60) :

void beep()

* Print BELL character */
printf(~\a") :

I

int start_depressed()

int c:

/* Test for depressed key and read it
if necessary */

if (kbhit()) |

c = getch() :

if (c == 0)
¢ = geteh() :

return TRUE :

else
return FALSE :

0
] el

—

T,

-

If Time Is Mi)né :

PDOS Can Make You Rich.

PDOS puts speed and profits back into your
realtime applications. Program development is done
directly on your target hardware saving downloading time
and debugging costs. A high priority program can respond
to an external event in less than 27 micro seconds. The
result is greater productivity and profits. Plus, PDOS comes
ported to the top-line VME systems. Choose from over 200
hardware products and from more than 20 manufacturers.

PDOS is as complete as itis fast. The PDOS modular
operating system includes a kernel, file manager, monitor,
debugger and other support utilities. The PDOS editor,

assembler; and linker are standard. Language compilers
and tools for multi-processing and symbolic debugging
are optional.

When you need support, we wont let you down.
We provide concise documentation and hotline support.
Because time is money, you cant afford to be without
PDOS. Here’ where to contact us: Eyring Systems
Software Division, 1450 West 820 North, Provo, Utah
84601 Telephone 801-375-2434 or Telefax

801-374-8339. .
BPDOS =

3PDOS is a registered trademark of Evring

___Em’NG S
—— Solutions™

PDOS Distributors In Benelux:

Interay BY Syslrix GmbH
Lageweqg 2A Hindenburgring 31
9251 GM Bergum D-7900 Ulm/Donau
The Netherlands West Germany

Telephone 05116/4052

In Germany, Switzerland and Austria:

Telephone 0731/37515

In United Kingdom:
Eyrisoft Lid.

Etwall Street

Derby DE3 3DT

England

Telephone 0332/384978

CIRCLE #224 ON READER SERVICE CARD

. R
HOMlng Listing3
Configuration file supplying information on organization of hardware
D 0 s c S and address spaces.

This is the configuration file for EGGTIMER.EXE
using Turbe C 1.5 in the small memory model.

dup DATA ROMDATA: Make a copy of initialized data

class CODE = OxfcOD: Assume ROM at FCOODh
ences that depend on the load address of
class DATA = 0x0040: Assuse program data at 00400h

the program. Locate must process the list
of relocation items that point to segment
register values needing adjustment rela-
tive to the final physical address.

The command line to transform the
.EXE file into a hex file suitable for
PROM burning is locate -b eggtimer,
where the -b option instructs the locate z-
utility to generate a far jump from the _
8086 reset vector to the entry point of the
start-up code. Table 1

order DATA BSS BSSEND STACK: Recreate DGROUP
order CODE CODEEND ROMDATA: Place initialized data after program code
rom CODE ROMDATA: ROM only program and initialized data

z Egg timer nt map.
Comparing the before and after loca- 98 Liar segemnct mon
tions of the segment addresses (Tables 1
Start) Len Name Class
and 2), we see that the segments have oy gth
_been adjusted to their physical addresses Q0000H 01900H (190EH TEXT CODE
in the target system. 01970H 01910 0000 H _ETEXT CODEEND
01920H 01BCSH . DO2AAH _DATA DATA
YOUR NEXT 01BDOH 01BDH 00002H _EVISEG DATA
APPLICATION 01BEOH D1BESH DO0DGH __SCHSEG DATA
hile the process of using MS- 01BEBH 01BETH 000024 _CRTSEG DATA
DOS tools to dgv(:]()p embed- 01BFOH 01C37H 00048H —BSS BSS
ded systems was demon- 01C38H 01C38H 00000H _BSSEND BSSEND
strated here using a simple application, 01CACH DT=H B0200H —STACKK STACK
D1E40H 01EAOH 00000H ROMDATA ROMDATA

the same steps can be used in larger pro-
grams. As the size and number of pro-
gram source modules grow, the number
of combine classes (see Table 1) in the

EXE file stays constant. 3 —
Other than assembling, compiling,

and linking these modules, little addi- Table 2

tional effort is required to burn a more

St Egg timer locate map.
complex application in one or more
PROM:s.]::.'a}' following the simple proce- Name Class Address Length
dures outlined above, we can develop a
new generation of sophisticated applica- _TEXT CODE FCOOOH 190EH
tions for 8086-compatible microcontrol- _ETEXT CODEEND FD910H 000TH
lers using popular PC compilers. _DATA DATA D0400H 02AAH
_LCVTSEG DATA 006B0H 0002H
L o o o0 oos
Rick Naro is the president and founder —LATSEG DATA 006CEH 00024
of Paradigm Systems Inc., a developer of —BSS BSS:;‘;; gg:ﬂz gg‘;ﬁ:
embedded system development tools for ~Assen)
% - 5 _STACK STACK 00720H 0200H
Intel and NEC microprocessors. Rick sikbiii ki Shniog S
has been building Fmbedded systems _f_”or AT ROMDATA FDS20H 02AAH
Intel and NEC microprocessors for nine _CVTSES ROMDATA FDRDON 0002H
years and is also the author of INSIDE!, _SCNSEG ROMDATA EDBEOH 0008H
a software performance analysis utility _CRTSEG ROMDATA FDBEGH 0002H
for PC compilers. ?7B00T (ABSOLUTE) FFFFOH 0005H

52 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

e ."'_;'_"'_:i,‘_

Get hardware and software
working together...

...and you'll rea
levels you've ne

Harris Introduces
Real Time Express™

The first microcontroller
optimized for real time, will put
your systems on the fast track!

- Every designer is looking for a faster
system. But the special demands of real-time ap-
plications require you to look beyond MIPS—to
predictability, repeatability and responsiveness.
Because in a real-time world, a late answer is a
wrong answer.

Now there’s a solution addressing all your per-
formance parameters: our Real Time Express
(RTX™) family. Combining the integration of
a microcontroller and the speed of a RISC
processor.

Real-Time Tradeoffs
Before RTX™

Traditional microprocessors sacrifice predict-
ability and external response to achieve high

instruction-execution speeds, and they can’t
switch tasks quickly with minimum overhead.
Traditional microprocessors lack flexible par-
titioning between hardware and software to meet
critical timing requirements. You can’t easily ex-
tend their architectures to accommodate
application-specific needs, either.

Real-Time Software:
Hard Without RTX™

Today's real-time software environment restricts
designers’ productivity. They have no choice but
to mix high-level and assembly language —
sometimes microcode, too — during program
development. To achieve real-time performance,
they must program and debug the most complex
tasks at the lowest level. The result: long develop-
ment cycles, difficult debugging and high
maintenance costs.

RTX 2000™ Performance
_ Processor Typical Instruction | P Dissipati ! pt | Conditional | 16 x 16 Multiply ASIC Bus™ Suhroutine Call/Return
Clock Speed (MHz) | Rate (MIPS)" {mw) Latency (ss) | Branch (us) (5) Bandwidth (Mbytes/Sec) Overhead (x5}
15 15.0 400 0.4 0.10 010 0 0.10
8 12.0 320 05 0.12 0.12 16 0.12
5 75 200 08 0.20 0.20 10 0.20
1 1.5 40 40 1.00 1.00 2 1.00

“Instruction Rate Measured In Millions Of Instructions Per Second.

ch performance
ver dreamed o

S

o e S I R e R A A

The RTX™ Solution: ATX 2000/2001™ Features
No More Performance Penalties Feature RTX 2000 RTX 2001
The Real Time Express™ family of general pur- | TimedCounters (on-chip) 3 ea. — 16 bit 3ea. — 16 bit
pose, application-specific and semicustom prod- | e e onchin) | N and 1 Maskabe. || WMt ane 13 Maskable
ucts offers you microcontroller integ ration and (Expandable off-chip) | (Expandable ofi-chip)
RISC processor speed — for a fraction of the Memory (on-chip) | 256 x 16 Parameer Stack | 64 16 Parameter Stack
power of conventional designs. 256 x 21 Retum Stack | 64 x 21 Retum Stack
It achieves performance through simplicity and e 53 et
parallelism, using an innovative dual-stack Quad Controfier (on-chip)
= 2 : s
Bus™ architecture with no caches or pipelines. S T 661
RTX™ frees you to program your entire ap- - :
plication in a structured, high-level language (C, 16 16 Muttiply Single Cycls 20Cycke
Forth, Prolog) without traditional performance 32/16 Divide 21 Cycle 21 Cyce
penalties. 32116 Square oot 25 Cycle 25 Cycle
Address Range 1 Moyte 1 Mbyte
Data Bus 16 bit 16 bit
Byte Operations Yes . Yes
Package 84 pins 84 pins
883C Compliant 10.CY89 Not Planned
Semicustom Migration Path Yes Yes
Rad-Hard Migration Path Yes Not Ptanned
‘ 9 32 bit Migration Path Yes Yes
RO - g ; Development System Yes Yes
a8 ; b, N _ Forth Com Now Now
. ; . - A s
e s C Compiler 40CY88 40 CY8s8 i
The Little Engine That Does: Based on proven macro g
cells, the Harris RTX is fully integrated into a CAD system, Prolog Compiler 1acvss 1acvsa
adding flexibility and reducing risk in semicustom designs.

more productive.

You’ll boost productivity by debugging interac-
tively — at full speed — with full symbolic debug
support. Powerful debugging tools you can use
on a low cost PC.

Now you can integrate hardware and software,
and debug without investing in costly, complex In-
Circuit Emulators (ICE).

It’s everything you've wanted in a real-time
microcontroller — rapid interrupt response,
predictable timing, fast context switch, hardware
extensibility (via a unique ASIC Bus™). And our

A better hardware-to-software balance can make you 10 times

16-bit RTX 2000™ and RTX 2001™ are just the
start. To respond to the diversity of your real-time
applications, we'll be announcing a broad family
of RTX™ products, among them fixed and
floating point versions, and a 32-bit model.

Find out more about how you can move more
of your hardware into software — and get them
working together like never before.

Contact us for technical briefs or to reserve a
spot at an RTX™ seminar near you.

In U.S.: 1-800-4-HARRIS Ext. 1288 (literature)

Ext. 1299 (seminars)

In Canada: 1-800-344-2444 Ext. 1288 (literature)

Ext. 1299 (seminars)

Sales Offices

US. HEADQUARTERS EUROPEAN HEADQUARTERS FAR EAST HEADQUARTERS
Harris Semiconductor Harris Systems Ltd. Harris K.K.
2401 Palm Bay Road Semiconductor Sector Shinjuku NS Bldg. Box 6153
Palm Bay, Florida 32905 Eskdale Road 2-4-1 Nishi-Shinjuku

Winnersh Triangle Shinjuku-Ku, Tokyo 16 Japan

Wokingham RGI11 5TR TEL: 81-3-345-8911

Berkshire

United Kingdom

TEL: 0734-698787

DISTRIBUTORS IN US.A.
Anthem Electronics
Falcon Electronics

Schweber Electronics
Hall-Mark Electronics

Hamilton / Avnet Corporation

DISTRIBUTORS IN CANADA
Hamilton/Avnet Corporation
Semad Electronics

IN REALTIME CONTROL,
THE NAME IS

HARRIS

Harris Semiconductor: Analog - CMOS Digital
Gallium Arsenide - Semicustom - Custom

0 HARRIS

CIRCLE #225 ON READER SERVICE CARD

Reorder Number: 6AD-5030
SHarms ration, July 1988
Printed in USA.

Real Time Express, ATX, ATX 2000,
ATX 2001, ASIC Bus, and Ouad Bus
are trademarks of Hamis Corporation.

ne of the simplest con-
cepts in computer science
isthatof the deterministic
finite state machine. A
DFSM consists of noth-
ing more than a set of states, a set of
events, and a state transition table (Fig-
ure 1A). If the machine is in state x and
event aoccurs, it makes a transition to the
state specified in the {x,a} entry of the
table. Some of the states may be final,
where the machine produces some output
when the state is entered, while the
rest—the nonfinal states—produce none.

Thesimplicity of this concept belies its
usefulness. Finite state machines are
commonly used in text editors, document
search programs, and compilers, per-
forming such functions as regular expres-
sion searching and lexical analysis. They
may be found in operating systems, com-
munications and networking software,
industrial process control systems, and
robotics. DFSMs are also found in some
artificial intelligence applications, such
as expert systems and pattern matching,
and are built into the firmware of ad-
vanced logic circuits. For all this, they're
easy to simulate in software and easy to
debug and maintain.

Assimpleasa DFSM is, there’s some-
thing even simpler: its minimal equiv-
alent (Figure 1B). For any finite state
machine there’s an equivalent DFSM
that has a minimum number of states.
Given any possible sequence of events as
input, the output from the machines will
be identical.

The existence of a minimal equivalent
DFSM can be important, especially for
applications involving machines with
hundreds of states and events that must
operate in real time or be embedded in a
system with limited memory. However,
knowing that there’s a minimal equiv-
alent DFSM for any given machine isn’t
the same as knowing how to find it. Try-
ing to minimize even a simple DFSM by
trial and error will quickly convince you

|
BY IANASHDOWN |
|

Steven Hunt/image Bank

Minimizing

Finite State
Machines

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING D7

Minimizing
Finite State

Machines

that an automated method is required.

Fortunately, there are several algo-
rithms available that do just this. They
vary in complexity and efficiency, with
the most complex—Hopcroft’s Parti-
tioning Algorithm—also being the most
efficient for large DFSMs.

DEVELOPING THE
ALGORITHM
ou might ask why it’s necessary
i to present the theory behind
Hopcroft’s algorithm. The for-

mal mathematical proofs are available,
sowhy not simply present the pseudocode

58 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

along with suggestions for implementing
it?

The answer is twofold. First, while the
algorithm may be easy to implement, the
way it works isn’t at all obvious. If you're
to have any confidence in your implemen-
tation, you must understand the underly-
ing theory. Second, the mathematical
proofs that have been published aren’t
easy to follow. As noted by D. Gries in his
article “Describing an Algorithm by
Hopcroft™ (Acta Informatica 2: 1973),
“the algorithm, its proof of correctness
and the proof of running time are all very
difficult to understand...[the reader] is
challenged to first read Hopcroft’s origi-
nal paper and see whether he can under-
stand it easily.”

Surprisingly, this is no cause for con-
cern. Shorn of its mathematics, the theo-
ry is really quite simple and intuitively
logical. The few concepts to be grasped
can be illustrated nicely with simple
sketches of circles and arrows.

Let’s begin with the basics of DFSMs.
Each DFSM has a finite number of
states, with each state having one transi-
tion to a new state (possibly itself) for
each of a finite number of events. Also, no
state can have a transition to another
state without an event. Those states pro-
ducing some output when they’re entered
are final states; all others are nonfinal.
These conditions define a DFSM.

There are two possible relations be-
tween states: equivalent and distinguish-
able. Any two states of a DFSM are
equivalent only if for every possible sc-
quence of events the machine produces
exactly the same sequence of outputs, re-
gardless of which of the two states is used
as the starting state. If there’s any se-
quence of events for which this isn’t true,
then the two states are distinguishable.

Again, these are relations between
states, not attributes of the states them-
selves. A state can be distinguishable
from a number of states and, at the same
time, equivalent to one or more others.

Figure 1A

State transition graph and table for

original DFSM to be reduced.
a
-
”—t 1
0.1 (]
b c d
[}
[3
1
| B

Figure 1B

State transition graph and tabie for

minimal equivalent DFSM.
1
5 0.1 7;_: ® %
g
1
EFx

If two or more states are equivalent,
they can be merged intoone stateina new
DFSM that will produce the same out-
puts as the original DFSM for any se-
guence of events. Distinguishable states,
on the other hand, can’t be merged.

To illustrate the point, consider the
DFSM shown in Figure 1A. In general,
it’s difficult to determine whether or not
twostates of a DFSM are equivalent sim-
ply by inspecting the state transition
graph. In this case, however, it’s easy to
see that states a and c are equivalent and
can be merged into one state, a.c (as
shown in Figure 1B). The two machines
produce exactly the same output for any
possible sequence of events, regardless of
whether you start in state a or ¢ of Figure
1A or state a,c of Figure 1B.

If we could find all the equivalent
states of a DFSM and merge them as ap-
propriate, we would end up with its mini-
mal equivalent. Our task is to develop an
algorithm that can systematically identi-
fy these equivalent states.

Figure 1C
Partitioning of set of siates S.

5 ‘

State Type Transition 2 . 2 5 =
U] 1
(] NONFL d c s1 l l
b NONFL ¢ © a] c d e
e
51 52 S0 53
0.1 d FINAL d d
b a c e d
e FINAL (3 e
Figure 2
Rule #1: Partitioning of set Sjwith
respect to set Sion event a.
State Type Transition
0.1 L} 1 51 = =1
x ¥y — x)
e FINAL a.c e .
b NONFL ac a.c
St S= st S=
a.c NONFL | a.c ¥ z w z
d FINAL d d

Turning this problem around, let’s
consider all the states of a DFSM as be-
ing initially in one set. We want to parti-
tion this set into successively smaller sets
so that eachset ultimately consists of only
equivalent states (possibly with only one
state in a set) and each set represents a
state of the minimal equivalent DFSM.
Distinguishable states will, of course, al-
ways be in separate sets.

Looking again at Figure 1A, our ini-
tial set would be {a.b.c.d.e}. After fully
partitioning this set (see Figure 1C), we
would have four sets, {a.c}, jb}, {d}, and
{e}, each of which represents a state of the
DFSM shown in Figure 1B.

How do we decide how to partition a
set? Well, our definition of state equiv-
alence clearly says that final and nonfinal
states can’t be equivalent. Starting in a
final state immediately produces some
output, while starting in a nonfinal state
doesn’t. We can therefore start by parti-
tioning the DFSM’s initial set of states, S,
into two sets, one (S0) containing the final

states and the other (S1) the nonfinal
states. As shown in Figure 1C, our
DFSM'’s initial set would be partitioned
into {d, e} for set S0 and {a,b,c} for set $1.

THE FIRST RULE
fwe stop and think about it, we parti-
I tioned the initial set by determining
which states were clearly not equiv-
alent and separating them into two sets.
What we now need is a rule whereby we
can continue to determine which states in
a set are distinguishable, then partition
that set accordingly. By applying this rule
to each new set we generate, we'll eventu-
ally have only equivalent states in each set
and will have solved our problem.
Consider for a moment state e in set S0.
It has a transition on event 0 to state ¢ in
set 51. However, state d, whichis also inset
50, has a transition on event 0 to itself in
set S0. Since we know that a state in a
DFSM can’t have a transition to two
states on the same event and that statesin
separate sets must be distinguishable, we

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 59

e R
Minimizing
Finite State
Machines

arrive at an inescapable conclusion:
states dand e must be distinguishable. Set
50 can therefore be partitioned into sets 50
and S2 (Figure 1C). We can generalize
this observation to form our first rule (il-
lustrated in Figure 2):

Rule #1: Given any two sets Si and §j,
examine each state within Sj. If, for any
given event a, state xin Sj has a transition
to a state in Si while state y in Sj does not,
then state x is distinguishable from state
y. Set Sj can thus be partitioned into sets
Sj and sk, with those states having transi-
tions to states in set Sionevent aput inset
Sk and the rest left in Sj.

In applying this rule, we're determin-
ing whether or not we can “partition set
Sj with respect to set Si on event a,” or,
more succinctly, partition $j wrt {Si.a}.
(Note that 5i and Sj can refer to the same
set, so that a set can be partitioned with
respect to itself on a given event.)

Rule #1 doesn’t identify all distin-
guishable states in set §] each time it’s
applied; rather, it merely determines
which states in $j are distinguishable
with respect to set Si on event a. If there
are none, then we can’t partition Sj, at
least with respect to {Si,a}.

Nevertheless, once we've determined
whether or not a set can be partitioned
and have done so if possible, we simply
say that the set has been partitioned.
While grammatically suspect, this con-
vention simplifies the discussion that
follows without introducing any
ambiguities.

We can now develop a simple algo-
rithm. Given a DFSM, we consider all of
its states to be in one set, which we call .
We partition $ into two sets, S0 and $1,
where 50 consists of all the final states and
$1, the nonfinal states. We then continue
to partition sets by applying Rule #1 until
we no longer have any sets with distin-
guishable states in them.

Expressing this in a more symbolic
form, we have the algorithm in Listing 1,
where move(x,a) denotes the state to

which state x has a transition on event a.
This algorithm is extremely simple, but
it’s also quite inefficient because it has to
repeatedly check every possible combina-
tion of sets $i and Sj for every event a. In
general, this repetition isn’t necessary.
What we want is some means of iden-
tifying those set-event pairs, {5i,a}, that
we know in advance will not result in any
other sets’ being partitioned. As it turns
out, this not only is possible but has sig-

Applying Rule #1 to partitioning of sets.

partition S into SO (final) and 51 (nonfinal)

WHILE there are sets Si and Sj and an event a
such that states x and y are in Sj and
state move(x,a) is in Si but state

move(y.a) is not in Si

determine partitionings of all sets wrt {Si.a)
partition all indicated sets

nificant benefits. Our current algorithm
has an 0(m*n?) time complexity, where mis
the number of events and nis the number
of states. Hoperoft’s Partitioning Algo-
rithm, on the other hand, has a time com-
plexity of 0(m*n*log(n)) (where the loga-
rithm is to base 2).

The time complexity of an algorithm
is simply a relative measure of its worst-
case running time with respect to the
quantity of input data. For example, if an
implementation of an algorithm takes c*n
seconds to process nitems of data, where c
is a constant, we say the algorithm has an
0(n) time complexity. If it takes c*n? sec-
onds to process nitems of data, we say the
algorithm has an 0(n?) time complexity.
(The constant factor cis dependent on the
implementation of the algorithm, not the
algorithm itself, and is thus ignored.)

To illustrate the significance of a time
complexity of 0(m*n2) versus 0(m*n*log
(n)), let’s assume that, for some number

60 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

The time complexity
of an algorithm is
simply a relative
measure of its
worst-case running
time with respect to
the quantity of input
data. For example, if
an algorithm takes
c*n seconds to
process n items of
data, we say the
algorithm has an
0(n) time
complexity.

of events m, both algorithms can process
one state in a millisecond. In one minute,
our current algorithm would be able to
process 244 states, while Hopcroft's algo-
rithm could handle 4,893 states. In one
hour, the difference is far greater: 1,897
states versus 204,094, Need [say more?

IMPROVING THE
ALGORITHM

ow that we have an incentive to
N continue, let’s consider parti-

tioning once again by looking
at Figure 2. We've just partitioned set Sj
with respect to set 5i on event ainto sets Sj
and Sk. This means that none of the states
in §j have transitions to any state in Sion
event a, while all the states in Sk do.

If we now partition set Sk with respect
to some other set and event into sets Sk
and 1, there’s no point in reapplying Rule
#1 to these new sets with respect to Si on
event a. As noted above, all their states
have transitions to states inset §i on event
a (see Figure 3). Applying Rule #1 would
reveal no distinguishable states. We can
generalize this observation to form our
second rule.

Rule #2: If all sets have been parti-
tioned with respect to set Sionevent afas
determined by Rule £1), then there’s no
need to determine the partitioning of any
future set with respect to set Sionevent a
{where future set refers to all existing

sets and any new sets that may be created
by partitioning these sets later on).

This rule is important to us. With it,
we can state that we don’t have to deter-
mine the partitioning of all sets with re-
spect to certain combinations of sets and
events. Before we incorporate the rule
into our algorithm, however, two more
rules await discussion. The first can be
simply put:

Rule #3: Suppose set Sj has been par-
titioned with respect to some set on some
event into sets Sj and Sk. Then, for any
evenrt a, we need to determine the parti-
tioning of all future sets with respect to
only two of the three sets (the original set
Sj, the new set Sj, and set Sk).

The basic idea behind Rule #3 is this:
in determining the partitioning of some
set Sm with respect to Sj on event a, we're
determining whether or not each state in
Sm has a transition on event ato a state in
5j. If we now partition Sj into $j and Sk,

bR
Figure 3

Rule #2: Sets partitioned with respect to
selSiot:eventa. p
al 5} s:l—

x v y |—=] x v ¥
4 el

Step 1: Partition 5j with respect toset Sion event a
into Sjand Sk.

SJII ls.ll ﬂfl : 51
HEretelb el ol

Step 2: No need to partition new §j or St with respect
10 sct 51 on event a; no distinguishable states will be
revealed.

Rule #2 is important
to us. With it, we
can state that we
don’t have to
determine the
partitioning of all
sets with respect to
certain
combinations of
sets and events.

then determine the partitioning of Smwith
respect to, say, the new Sj on event a, we
are in fact determining whether each
state in Sa has a transition on event ato a
state in the new §j. However, once we've
done this for each state in Sm, we also know
whether or not it has a transition on event
a to a state in Sk and need not determine
the partitioning of any set with respect to
Sk on event a. The same argument applies
for any two of the three sets, as Figure 4
illustrates.

There are two cases to consider here.
Suppose we've just partitioned some set
§jinto 5jand Sk but have yet to determine
the partitioning of all sets with respect to
the original set $j for some event a. Rule
#3 says we can now determine the parti-
tioning of all sets with respect to (the
new) {Sj.a- and {Sk.a} instead.

On the other hand, say we had parti-
tioned all sets with respect to Sj on event a
before we partitioned Sj into 5j and Sk.
Rule #3 says we now need to determine
the partitioning of all sets with respect to
the new {Sj,a} or {Sk,a}, but not both.

For our fourth and final rule, we re-

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 61

Minimizing
Finite State

Machines

turn to our original set of states, 5. We
partitioned § into two sets, the final states
(50) and nonfinal states (51). We already
know that for any state x and any event a,
the state move(x,a) must be in the parent
set, S, so there’s no need to determine the
partitioning of any sets with respect to S.
Rule #3 then says we need to partition all
sets with respect to either $0 or $10n event
a, but not both.

Rule #4: For any event a, we must de-
termine the partitioning of all sets with
respect to only one of the two sets (50 and
51).

Another interesting thing about Rules
#3 and #4 is that they say nothing about
the size of the sets involved. Since deter-
mining the partitioning of a set with re-

Rule #3 and Rule #4
don’t specify the
size of the sets. We
can save ourselves
some work by
choosing the
smaller set.

spect to a set 5i will require us to examine
each state in Si, we can save ourselves
some work by always choosing the small-
er of the sets by which to partition.

ALMOST THERE
hese four rules are sufficient to
I create an 0(m*n*log(n)) algo-
rithm. We now need to pull them
together into a workable implementa-

tion. We'll use a list, L, tokeep track of all
the set-event pairs, {5i.a}, with respect to

which all sets must be partitioned. Our
rules enable us to determine which pairs
won't be put on this list. We can then con-
tinue partitioning until the list is empty.

How does the list become empty? By
Rule #2, when we partition all sets with
respect to pair {S1,a}, we no longer have to
consider that pair and can remove it from
the list. Eventually all pairs will be re-
moved and the algorithm will terminate.

We must also add to the list whenever
a set is partitioned. As noted for Rule #3,
there are two cases to consider. Suppose
Sj has been partitioned into Sj and Sk.
Now if, for some event a, {Sj.a} is still on
the list, then by Rule #3 we need to deter-
mine the partitioning of all sets with re-
spect to the two pairs, {Sj.a} and {Sk,a}.
This means that we must add {3k a} to list
L. On the other hand, if {5j,a} isn’t on the
list (i.e., it was considered and removed),
then we need to add the smaller of {Sj.a}
and {Sk, a} to the list.

We can now present a major refine-
ment of our algorithm (Listing 2). When
this algorithm finishes, each set will rep-
resent one state of the equivalent minimal
finite state machine. Every state within a
set will be equivalent to every other state
in that set. A transition from any state to
a state within the set will be equivalent to
a transition to a state of the minimal
DFSM represented by that set.

We still have to resolve our hand-
waving concerning the actual partition-
ing of sets. To do so, we first define an
inverse state transition, denoted as in-
verse-move(x,a) for state xand event a. As-
sume that if our DFSM isin state y and is
given event a, it makes a transition to
state x. If we now reverse the machine and
remove event a, it makes an inverse tran-
sition from x to y. In other words, inverse-
move(x,a) is state y. Of course, the DFSM
may have two or more states that makea
transition to state x on event a. By revers-
ing the machine, we can see that each of
these states is an inverse transition from
state x on event a.

62 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

When the algorithm
in Listing 2 finishes,
each set will
represent one state
of the equivalent
minimal finite state
machine, with every
state equivalent to
all other states in
that set.

Listing 2
Refinement of aigorithm in Listing T: each
set now represents a state of the finite
state machine.
partition S into SO (fimal) and 51 (nonfinal)
Si (- smaller of SO and S1 /* by Rule =4 */
L {- NULL /* list L is initially empty */
FOR each event a
add pair {Si.a} to list L

WHILE pairs in list L

I
L

remove one pair {Si.a} from L /* by Rule =2 *
determine partitionings of all sets wrt {5i.a}
partition all indicated sets /= by Rule =1 */
FOR each Sj just partitioned into Sj and Sk
FOR each event a
IF {Sj.a} isinL /* by Rule =3 */
add {Sk.a} to L
ELSE
add smaller of {Sj.a} and {Sk.a} to L

‘Wecan use thisidea of an inverse tran-
sition to determine which sets can be par-
titioned with respect to pair {si.a}. Thisis
easily done by maintaining a list, D, of the
states to be moved to new sets. List D
should hold those states (y) whose state

Unbelievable!

B SEE HOW PROGRAMS WORK
W EASILY MODIFY PROGRAMS

SOURCER™ creates detailed commented source code and listings from memory
and executable files. Built in data analyzer and simulator resolves dala across
multiple segments and provides detailed comments on interrupts and subfunctions,
1/O ports and much more. Determines necessary assembler directives for reassem-
bly. Includes a definition file facility to include your own remarks and descriptive
labels, force data types, and more. Complete support for 8088/87 through 80286/287
and V20/V30 instruction sets. We welcome comparisons with any other product,
because no product comes close to the ease of use and output clarity of SOURCER.

On my list of programs that | simply won’t do without!
—Robert Hummel, Senior Technical Editor, PC Magazine

SR“PI.E resetpra.lit ReietPRN 9i.0L " S [k oy 19Apc-B3 5:05 pm Page 1
BUTPUT PAE 82,1
Fully it
= 3 Created: 15-dor B8
automatic W e Lo
Program - oxm data te o 8 ; (cD83:3005-T7n
header
- 8 B =
sega segrest para public
Assembler assome Cuiveg 2. CSovey 2. Ssistach seg b
directives resetzm poc far
S55F 0000 start:
ESEE:00W 3 23 e et o i
SE:NR RSENSND & Re1et?2y o X
SEIOE M WIENE
- SSE00E X 3D
Determines SO0 000 dsta 2 n
SSE:001) (0 0AS2ESTISS datald o on, O3, “Besec Fricter? 30
dala areas GES ABRAEEE 3
SE:NF ABRFAN
and type %085 o 1
SEORs & R
Detailed B ORE IF pm s
Al SSEE-ORY _BA 0013 o du offor: data 3 ; [E53:0013-0m)
etaite SSE:0m 308 o =3
comments SSE0DC @21 st 2h 3 008 Servizes aS-fomction O
: diplay S strieg sin
SSEO0E BA O wow abl
SX:00m o2 W oI S 008 Services ab-fusctiom Otk
5 get keybd char al, with oo
SENR XIS o aLEe z oy
LomooaM TS 18 e ix3 3 domp 1m0t equal
ES8-00% 5 IE OOLL Dor oxGfa 2 o [5A0E 0 I—sak)
ESEECO0M 38 15 ONB e decscata fe o (ODAG:008-37ER)
i E.E B0 R att &2
Simutator S 0Al 3008 mr alg
follows ESEE:00) EE eat &l 2 port X, prister-2 comtral
= 4l =8, isitialise prister
segment SSE-00AL 15 8000 L2
5 0BT Ieclocp 73
changes s-07 B2 FE Tp : lop M x> 8
ES%-DN5 = o mes 1,00
ESE:0%E EE ot de,21 = port ITAR, prizter-2 comural
: ab - ODn, Eatt & strote off
55 0L oc_3
S5O0 M 4 £ = = 4D =
SN Tn it ail = DES Servioes ab-fuscttos 408
Easyto T terminate witk al-retsrs code
ety
read e
format Soeen
srgmeTs
™
o
[

(Source code oulpul and infine cross reference can aiso be sefected)

B CHANGE AND ADD FEATURES
B CLARIFY INTERFACES

BIOS SOURCE

for PS/2, AT, XT, PC, and Clones

The BIOS Pre-Processor™ with SOURCER provides the first means to obtain
accurate legal source listings for any BIOS! Identifies entry points with full expla-
nations. Resolves PS/2's multiple jumps for improved clarity. Provides highly
descriptive labels such as “video_mode” and much more. Fully automatic.

SOURCERS$99.95 BIOS Pre-Processor® $349.95 SOURGER w/BI0S Pre-Processor $139.95
USA Shipping & Handiing $3: Outside USA $15; CA Residents add local salles tzx 8. 5.3 ar 7% “requirss SOURCER

All our products come with a 30 day money back satisfaction guarantee. Not copy
protected. To order or receive additional information just call!

= (800)662-8266 —

V COMMUNICATIONS
3031 Tisch Way, Suite 905, Dept. ES, San Jose, CA 95128 (408) 296-4224

PS2. AL XT. and PC e rademavics of B Targ.

CIRCLE #226 ON READER SERVICE CARD

What do IBM,

HP Raytheon and
others know
about 80X86
embedded system
development you
should know?

PHAR LAP TOOLS.

Keeping pace in today’s competitive
environment starts by keeping up-to-
date on the latest software innova-
tions. Phar Lap offers you the latest
solutions for ROM-based software
development. Start with 3861 ASM/
LinkLoc. This package includes an
8086/186/286/386 assembler, a linker/
locator for embedded targets, a
librarian, a debugger and 3861 DOS-
Extender. And we also offer high
level languages like C, Pascal,
Fortran and others.

These tools are available for a variety
of hosts including the IBM PC* Sun
and Apollo UNIX worksiations, VAX*
and MicroVAX* systems.

So, whether your code is written in
assembler or a high level language,
our tools will build programs which
can be downloaded to ICEs, ROM-
based debuggers or PROM program-
mers. Now you know what Phar Lap
has done for others. Think what it
can do for you.

Find out more about our set of 80X36
tools. Call or write for more informa-

' (617) 6611510

PHAR LAP SOFTWARE, INC.
60 Aberdeen Ave., Cambridge, MA 02138

“THE 80386 SOFTWARE EXPERTS”

Phar Lap and 3861 DOS- Extender aoe trademariks of Phar Lap
Software. Inc

VAN and MacroVAX are registered hademarks of Diptal Egupuorsent
Corposation.

BM PC is a trade mack of IBM Corp

CIRCLE #227 ON READER SERVICE CARD

N e
Minimizing
FiniteState
Machines

transitions (move(y,a)) are in Si or, equiv-
alently, all the inverse-move(x,a) states for
each state x in 5i.

By Rule #1, all these states should be
moved from their current sets to the twins
of those sets created by partitioning
them. This means that for each set xin list
D, the state Sj to which it belongs should
have a new empty set (5k) created for it (if
one doesn’t already exist) and state x
moved to Sk. As we work our way through
the states in list D, each set Sj has a twin
set, Sk, created for partitioning.

Finally, there’s a case where partition-
ing a set is unnecessary. If, for each and
every state y in some set Sj, move(y,a) is in
set Si, then we need not partition set Sj
with respect to set 51 on event a. [f we did,
every state would be moved to the new set,
leaving the original set empty.

Incorporating these ideas into our al-
gorithm, we get Hopcroft’s Partitioning
Algorithm in its final form (Listing 3). If
you have trouble following the pseudo-
code, try reading it in conjunction with
the step-through of the algorithm (Figure
5) for the DFSM shown in Figure 1A.

FINISHING TOUCHES

alf the fun (and most of the ag-
H ony) of program design is in

choosing the appropriate data
structures for algorithms. A good exam-
ple of this is list L. If we implemented it as
a linked list, we could determine whether
or not a given set-event pair is in the list in
0(n) time by simply scanning the list.
However, we can do much better than this
if we use a threaded list.

Consider that our algorithm doesn’t
specify the order in which set-event pairs
need to be added to or removed from list L.
We can therefore use a stack as the sim-
plest form of list data structure.

Also consider that no set-event pair
can ever appear on list L more than once.
This means that we can implement our
stack as a two-dimensional array of sets
and events, where each possible set-event

64 EMBEDDED SYSTEMS PROGRAMMING

pair is represented by an element of the
array (see Figure 6).

Initially, an empty stack is represented
by having all elements of the array set to
EMPTY. A separate variable holds the indi-
ces of the top of the stack, which is also
initially set to EMPTY.

When we push the first set-event pair
onto the stack, we use its set and event
numbers as array indices. We place these
values into the top-of-stack variable and
into the array element itself. If we think of
the array element as a link to another ar-
ray element, this means that the link is
pointing to itself—a convenient means of
indicating the bottom of the stack.

As each new set-event pair is added to
the stack, its array indices are placed in
the top-of-stack variable and its array ele-
ment is set to the array indices of the pre-
vious top-of-stack pair. In this way, each

Figure 4

Rule #3: Set Sjpartitioned into

Sa Sz sn Sa S sn
” Q*ql gl Q m = i - ; “
LIST L = {MAL}
a] a a 3 a a a a ADD to L- {vsa.u}
5] s_|' s_;' SI:

Casel Dclermmc parunomng wnlh respect to S_] al and fs_i

W o ‘?@g

Case 2: Determine partitioning with respect to {Sj.a} and {Sk.a}.
= = = = = E
| r £ t l—'-l r t ”?—* ? @ Q
a a a3 a a a a a L
Bkl

Case 3: Determine partitioning with respect to {53.a} and {Sk.a}.

Figure 6
Array SEPLST with sets /S1.7,
/$1,0),{53,7), and [S3,0)in List L.

EVENT L] 1

SET | rsED PEVT. PSEV Lol

Sj*and Sk.

new stack element has a link to the pre-
vious element on the stack. These links
can be viewed as a thread tying the ele-
ments of the stack together, hence the
name threaded list.

Removing a set-event pair from the
stack is equally simple. The top-of-stack
variable holds the set number and event
as array indices. The values in the indi-
cated array element, which point to the
previous set-event pair on the stack, are
copied to the top-of-stack variable and
the array element is set to EMPTY. This ef-
fectively pops the current pair off the
stack. If the indicated array element
points to itself, we know that we’ve emp-
tied the stack, so we set the top-of-stack
variable to EMPTY instead.

The advantage of using threaded lists
becomes most apparent when we have to
determine whether or not a particular

Figure 5
Step-through.

5 ={ab.c.de}
{d.e} 51 = {a.b.c}

ADD to L: {501}

REMOYVE from L: {S0,1}
List D = {d.e}

REMOVE from L: {50.0}
List D = {a.c.d}

CREATE $1's twin 52

MOYE a from 51 to twin S2
MOVE c from 51 to twin S2
CREATE S0's twin 53

NOVE d froa S0 to twin 53
ADD to L: {530}

ADD to L: {531}

ADD to L: {51.0}

ADG to L: é51 1}

REMOVE from L: {51.1;
List D = {NOLL}

REMOVE from L: {51.0}
List D = {NULL}

REMOVE froa L: {53.1|
List D= [d}

REMDVE from L: {53.0}
List D = {a.c.d}

Result:

sa={el (FINAL)
S1={b} (NONFINAL)
S2 = la,c} (NONFINAL)

Figure# = gt
Array ITARY
showing inverse transition lists.

v [| 1

SINIE HEAD PEY BEMD Y
L -1 c -1 3
B 1 L] =1 c
€ H (] (] -1
4 » -1 d -1
& -1 -1 = -1

All the Tools You Need
For Motorola 680X0
From Whitesmiths

Whitesmiths, Ltd. now offers a complete set of 68K Cross Development Tools —
spec{ﬂcatly designed to work together — for the Motorola 68000 family of
microprocessors. You get:

A C CROSS COMPILER _

Whitesmiths' € Compilers offer the closest conformance currently available to the draft ANSI C
Standard, We've added 68020 and 68881 support, and dramatically optimized code generation, so
you can get the code quality you need today with the language you’ll need tomorrow.

SUPPORT TOOLS
We have all the extras you need to develop embedded programs. Our powerful object utilities
help you link multi-segment programs, build direct and sequential libraries, create load maps and

interspersed 'listings, and talk to dozens of downloaders, emulators, and PROM programmers.
C SOURCE LEVEL DEBUGGING

We have the support you need to debug in terms of C functions, data types, and source lines.
You debug what you write, not a lower level language.

AN XA8 CROSS ASSEMBLFR
Our macm assembler is both fast and powerful with support for 68020 6 _

A PASCAL COMPILER

You can program as much as you want in ISO Standard Pascal, or use the
powerful extensions we've added to this production quality compiler. And
you get complete integration with C and assembly language as well.

Working together, the 68K Cross Development Tools deliver both
optimized performance and improved programmer productivity. L e i
Best of all, Whitesmiths offers everything you need at a very com- gt sl e
petitive price. We've been delivering and supporting high quality : St
software development tools since 1978, and we 're commitied to : el e
continually enbancing our product line.

If you develop 68000 programs on a DEC VAX, an IBM PC, or a
UNIX workstation, chances are we can save you time and money.
For more technical details, call our toll-free number today. We also
offer attractive packages for OEMs.

Whitesmiths, Ltd.
59 Power Road
Westford, MA 01886
617/692-7800

CIRCLE #228 ON READER SERVICE CARD

Minimizing
State Finite
Machines

set-event pair is in list L. To do this, we
simply check the appropriate array ele-
ment. If it isn’t EMPTY, then we know the
pair is in the list. Nothing could be faster
or simpler.

Figure 7 illustrates another use for
threaded lists, this time as anarray repre-
senting the inverse state transitions of the
original DFSM. Each element of the ar-
ray has two members, HEAD and PREV. For
anystate xand event a, HEAD holds the state
number (y) of the head of a threaded list.
The PREV member of element y.a} is the
link to the previous pair in the list. If the
entry is EMPTY, it indicates that the current
pair is the tail of the list.

We need to keep track of which states
of the original DFSM are in which sets as
the algorithm progresses. Once again,
threaded lists are used as the most appro-
priate data structures (Figures 8A and
8B). This time, however, theyre doubly

SET SIZE HEAD THIN

Figure SA[. [[[. [-

Array PSARY

showing set z 2 2 <
attributes. e
3 1 d =1

Figure 8B[. [[.[. -
Array SETMAP
showing set state| °] it E g
lists.

c 4 1 a
d 3 1 3 |
e] =1 =1

linked, as we need to link and unlink
states from anywhere in the lists as we
move states from one set to another. For
any set, array PSARY (Figure 8A) indicates
the number of states in the set, the num-
ber of the set that was created as its twin,
and the head of the threaded list of states
in the set. Array SETMAP (Figure 8B) holds
the threaded lists.

Finally, we need a quick method of de-
termining whether or not all states y in Sj
have move(y,a) in 51 when we’re partition-
ing sets. This can be done by maintaining
an array of counters, one for each state.
(We can never have more sets than there
are states in the original DFSM, of
course.) We clear these counters each
time we initialize list D. Then, each time
we append inverse state transition y to D,
we increment the counter representing
the set to which y belongs. When we parti-
tion sets, we need only compare the
counter for set §j against the number of
states currently in $j. If they’re equal,
then there’s no need to partition the set.

Listing 3
Hupcroft's%arlitinning Algorithm in its
final form.
/* Initialize */
partition S into SO (final) and S1 (nonTinal)
Si (- smaller of SO and S1 /* by Rule #4 */
L {- NULL /* list L is initially empty */
FOR each event a
add pair [Si.a] to list L
WHILE pairs in List L
i
remove one pair {Si.a} from L /* by Rule =2 */
/* Determine partitioning of all sets
wrt {5i.a} */
D (- NULL /* 1ist D is empty */
FOR each state x in Si
add all inverse-move(x.a) states to 1ist D

/* Partition each set as just determined */
FOR each state x on list 0 /* by Rule #1 */

Sj = set number in which state x appears
IF all states y in Sj have move(y.a) in Si

CONTINUE /* no need to partition set */
ELSE

IF Sj has not been partitioned yet
create empty set Sk /* twin of 5§ */
move x from Sj to Sk

/* Fix list L according to partitions that
Jjust occurred */
FOR each 5j just partitioned into Sj and Sk
FOR each event a
IF /Sj.a} is inL /* by Rule #3 */
add [Sk.a| to L
ELSE
add smaller of |Sj.a} and |Sk.a} to L

66 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

AN ALTERNATIVE

hile it’s nice to know about
\ & / Hoperoft’s Partitioning Al-
gorithm and its 0(m*n*(log

n)) time complexity, a simpler algorithm
might be preferable. There is such an al-
gorithm; works listed in the bibliography
below explain that and Hopcroft's algo-
rithm in detail.

Ian Ashdown is a senior software engi-
neer with Glenayre Electronics, Vancou-
ver, B.C., Canada, specializing in real-
time programming for electronic voice
mail systems.

Further Reading

Aho, A. V,, J. E. Hopcroft, and J. D.
Ullman. The Design and Analysis of
Computer Algorithms. Reading, Mass.:
Addison-Wesley, 1974.

Aho, A. V., R. Sethi, and J. D. Ull-
man. Compilers: Principles, Techniques
and Tools. Reading, Mass.: Addison-
Wesley, 1986.

Aho, A. V., and J. D. Ullman. Princi-
ples of Compiler Design. Reading,
Mass.: Addison-Wesley, 1977.

Barrett, W. A., and J. D. Couch.
Compiler Construction: Theory and
Practice. Chicago: Science Research As-
sociates, 1979.

Gries, D. “Describing an Algorithm
by Hoperoft.™ Acta Informatica 2
(1973):97-109.

Hopcroft, J. E. “Ann log n Algorithm
for Minimizing States in a Finite State
Automaton.” Theory of Machines and
Computations. Academic Press (1971):
189-96.

Hopcroft, J. E., and J. D. Ullman. In-
troduction to Automata Theory, Lan-
guages and Computation. Reading,
Mass.: Addison-Wesley, 1979.

Hopkin, D., and B. Moss. Automata.
London: MacMillan Press Ltd., 1976.

Huffman, D. A. “The Synthesis of Se-
quential Switching Circuits.” Journal of
the Franklin Institute 257: 161-90, 275-
303.

Moore, E. F. “Gedanken Experiments
on Sequential Machines.” In Automata
Studies, edited by C. Shannon and J.
McCarthy, 129-53. Princeton University
Press, 1956.

EASY TO LEARN - EASY TO USE
e Edit and compile while debugging in the IBM,
PC/AT[XT
s Access, display and modify variables with zero speed
impact on 8094/196 microconirollers
e Symbolic debugging with ASM96, PLUM®6 & C96
* Multiple hardware breakpoints

Annapolis Micro Systems, Inc.

442 Third St. Annapolis, Maryland 24403

(301) 269-8096

CIRCLE #229 ON READER SERVICE CARD

63000 68020
68010 68030

FOR EMBEDDED SYSTEMS DESIGNS

The most powerful C cross compiler targeting
the Motorola 68000 microprocessor family.

Supports the 6888l floating point coprocessor and
the 68851 paged memory management unit.
Available on the IBM PC/AT, Sun workstations and
DEC VAX under Ultrix and VMS.

® COMPLETE — All the tools vou need for cross-development.

» VERSATILE — Solves your cross-development problems with features
like position-independent code generation and support for fragmented
address spaces.

» HIGHLY OPTIMIZING —Achieves industry leading performance through
state of the art optimization techniques.

® FAST—Compiles, assembles, links and downloads 10-20 times faster
than the compelition.

(415) 339-8200

6728 Evergreen Avenue ® Oakland, CA 54611

CIRCLE #230 ON READER SERVICE CARD

TOTALCONTROL

with LMI FORTH™

| §

For Programming Professionals:

an expanding family of
lcompatible, high-performance,
'Forth-83 Standard compilers

i for microcomputers

For Development:

Interactive Forth-83 Interpreter/Compilers
| = 16-bit and 32-bit implementations

= Full screen editor and assembler

= Uses standard operating system files

= 400 page manual written in plain English

« Options include software floating point, arithmetic

coprocessor support, symbolic debugger, native code

| compilers, and graphics support

k For Applications: Forth-83 Metacompiler

» Unique table-driven multi-pass Forth compiler

= Compiles compact ROMable or disk-based applications

+ Excellent error handling

* Produces headerless code, compiles from intermediate
states, and performs conditional compilation

= Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303

= No license fee or royalty for compiled applications

For Speed: CForth Application Compiler

= Translates “high-level” Forth into in-line, optimized
machine code
» Can generate ROMable code

Support Services for registered users:

* Technical Assistance Hotline
» Periodic newsletters and low-cost updates
» Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

Germany: Forth-Systeme Angelika Flesch. Titisee-Neustadt, 7651-1685
UK: System Science Lid., London, 01-248 0962
' France: Micro-Sigma S.A.R.L_, Paris, (1) 4265.95.16

} Overseas Distributors.

Japan: Southem Pacific Ltd., Yokohama, 045-3143512
Australia: Wave-onic Associates, Wilson, WA (09) 4512845

| -~ .

i Laboratory Microsystems Incorporated

| I Post Office Box 10430, Marina del Rey, CA 80235

| Phaone credit card orders to: (213) 306-7412 |

CIRCLE #231 ON READER SERVICE CARD

A good technical
conference lets you

choose your
own focus.

<5 f 1
NS ARV RN

Choose yours from over 150 classes in 31/2 days
at SOFTWARE DEVELOPMENT ’89.

ow there’s a solution to an old dilemma:
N How do you learn tried-and-true solu-

Hons to your everyday programming
problems while keeping an eye on the industry
as a whole?

Find the answer at the largest technical confer-
ence designed by and for programming profes-
sionals. SOFTWARE DEVELOPMENT ‘89 gives
you the opportunity to sample the newest ideas
in every facet of programming. Presented by 90
of the brightest minds in the profession.

You'll find a base of classes wide enough to
satisfy your interest in general industry trends.
But you'll also find that by following one of nine
different program "tracks,” you can tailor a pro-
gram to your particular programming specialty.

"SOFTWARE DEVELOPMENT '88
was very useful--a person can't be
an expert at everything, so it was

good to be able to take some intro-
ductory sessions in other areas."

=-Dennis Jump THE GREAT SOFTWESTERN CO.
Inc. Denton, Texas

One whole track is devoted exclusively to Embed-
ded Systems Development. If your interest lies
here, you'll greatly increase your level of practi-
cal, marketable skills in this field. Choose from
courses like:

* Assembly Optimization/Memory Emulators
* Controlling Concurrency in Tasking

* Debugging Embedded Systems

* Designing for Embedded Systems

* How to Design a Real-Time System

|| * Marrying Software and Hardware s
|| * Memory and Interrupt Execution in
| Embedded Ada

| * Microcontrollers and Forth

' * Next Generation CPUs

* System Developer’s Workbench

If you want to explore the industry outside of
your specialty, check into any of the dozens of
classes in other tracks, covering subjects in Arti-
ficial Intelligence, C Programming Issues, Design
Methods, Graphics, Languages, Object-Oriented
Programming, and Software Tools and Issues.

Software Development "89, Miller Freeman Publications, 500 Howard St San Francisco, CA 94105 (415) 995-2471 FAX#:(415) 543-0256

.

Vital Information,

to Save You Vital Time

Optimize the time you need to invest in educa-
tion. Compress a year’s worth of learning into
three full days by benefiting from the knowledge
of leaders in every key facet of software develop-
ment. People like:

Bill Gates, Philippe Kahn, PJ. Plauger, Bjarne
Stroustrup, Ed Yourdon, Ray Duncan, Chuck
Moore, Lou Mazzucchelli, Walter Bright, Robert
Ward, Jim Brodie, Ken Orr, Charles Duff, Ken
Iverson, Terry Winograd, Richard Finkelstein
and Earl Sacerdoti

And you'll have time to:

* Meet with your peers in informal receptions and
svening round table discussions.

* Visit the largest trade show for the industry: the
SOFTWARE DEVELOPMENT 89 Development
Products Exhibition.

* Meet with the people behind the products at
evening vendor panel discussions.

=

The sponsors of SD 89 are dedicated to bringing
you up-to-the-minute information in software de-
velopment. They’re the same people who bring
you Al Expert, Computer Language, Database Pro-
gramming and Design, Embedded Systems
Programming, and UNIX Review, so you can be
sure course topics are fresh and practical.

Save $100 And Make Sure

You Get The Classes You Want.

While the regular fee for the full three and a half
days of SOFTWARE DEVELOPMENT “89 is $695,
by registering now (before December 31st) you'll
receive a $100 discount. Register two or more
people from the same organization and you’ll get
an additional discount of $25 each.

At last year’s conference many sessions were
illed up months ahead of time. So in addition to
he important savings in the registration fee,
you'll guarantee getting the classes you want by
registering today.

Special No-Risk Guarantee

Because you are a reader of Embedded Systems
Programming, you are entitled to our first-ever
money-back guarantee:

If, after attending, you feel SOFTWARE DEVELOP-
MENT 89 did not give you the practical information

you came for, we'll refund your fee. No questions
asked.

Register now — take the discount — then if you
need to cancel for any reason before Jan. 30, 1989
you will receive a full 100% refund.

With a guarantee like this you can’t lose.

i
it '|||||I '||||Iii5}\\\\1i\m\\;‘...:lillllllllih'

SOFTWARE
DEVELOPMENT 89

February 14-17, 1989
Hyatt Regency Burlingame
San Francisco Peninsula, CA

Clip and mail the coupon today.
Or to register instantly, call Bill Rutledge or
Anastasia Mills at (415) 995-2471.
————— E
[CIYes. Please register me to attend Software Devlopment "89

PLEasE Cut HERE }'— =

1 Not yet, but I'm interested — Please send me a complete
course description catalog

1 Please send me information on exhibiting

Name:
Title:

Company:
Address:
City, State, Zip:
Phone:

Registrant fee: $695. Pay only $595 if payment is sent
before 12/31/88. Deduct $25 each for two or more registrants.

1 Bill me] Payment enclosed
1 VisarOMC 3 Amex #

expires: Signature:

Software Development *89, Miller Freeman Publications, 500 Howard St.
San Francisco, CA 94103, (415) 995-2471 FAXZ2: (415) 543-0256

Priority Code:(ES12)

CIRCLE #232 ON READER SERVICE CARD

rogramming an embedded sys-
P tem is by its very nature an auda-

cious enterprise. It’s not a task to
be undertaken lightly, nor frivolously em-
barked upon by coders accustomed to the
warm security of DOS or UNIX. Sans
prototype, sans newfangled development
“environment,” sans (as often as not) op-
crating system armor, programmers step
into the ring armed only with their wits
and a stack of impenetrable manuals.

This system may have been sufficient
for hacking out the odd kilobyte of assem-
bly language for low-level controller ap-
plications, but primitive development
tools fall short in the creation of the ambi-
tious systems in demand today. Embed-
ded systems now require that the com-
puter’s power be applied to the creation
and refinement of computer software.
Programs that aid in the development of
other programs have become the norm.
In some cases, software can even substi-
tute for expensive, inflexible dedicated
hardware devices.

Microprocessor simulators are a case
in point. Simulators are software-based
models of the target system’s hardware.
The models reside in RAM within the
development system—typically a DOS-
or UNIX-based microcomputer—and
precisely mimic the operations of the tar-
get processor as it executes the program-
mer’s code. Simulators are most useful
for debugging, permitting programmers
to set breakpoints, perform single-step
code execution, and monitor the values of
variables as the program proceeds.

In fact, simulators are theoretically
capable of replacing in-circuit emulators
entirely, at least during the application-
debugging phase of development. And
since they cost much less than emulators,
everyone can have one. No one will have
to wait around until the ICE is free.

Simulators aren’t without problems,
though, the most important being execu-
tion speed—execution is slower by as
much as an order of magnitude.

®PRODUCTEVALUATION

by John M. Dlugosz

-~ Debugging Without ICE

EMBEDDED SYSTEMS

PROGRAMMING RATES
SImM8051 v. 3.1 ‘

Available From: Cybernetic Micro Sys-
tems Inc., P.O. Box 3000, San Gre-
gorio, Calif. 94074, (415) 726-3000
Price: $495

Supporl: 90-day warranty on diskette,
free telephone support

System Requirements: IBM PC or clone,
256 kbytes RAM, DOS 2.0 or later

Subtler problems exist as well. Simu-
lators vary in the depth to which they
match the target system’s hardware pe-
culiarities. Some are based on processors’
published specs instead of the (slightly
different) chips that actually leave the
production facility. And simulators vary
in their ability to mimic or communicate
with special-purpose support chips that
may be incorporated into the design.

This review compares the strengths
and weaknesses of a pair of PC-based
simulators for the Intel 8051 controller.
Although the vendors take different ap-
proaches toimplementing the simulators,
a number of fair comparisons and sup-
portable conclusions may be drawn.

70 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

SIM8051

Sim8051 is a simulator-cum-debugger
from Cybernetic Micro Systems. It runs
on PCs under MS-DOS and simulates
the Intel 8051 and 8052 families of mi-
croprocessors. [t provides source-level de-
bugging facilities when used with CMS’s
Cys-8051 assembler or Archimedes C.

Commands are communicated via
special keys (such as Ctrl-T to toggle
trace mode) or a command line. Macros
are defined by pressing a function key or
by special stimulus comments in the pro-
gram source code. The keyboard remains
live while the simulator is running, so you
can examine and change data while the
program executes.

In the upper-left quadrant of the dis-
play is a source listing. Because this is a
source-level debugger, more than just a
simple disassembly is performed. Rather,
it shows the program as written, complete
with comments and macros.

The PgUp and PgDn keys scroll the
code window. Normally the next instruc-
tion to be executed is marked with an as-
terisk that stays in the center line of the
window and doesn’t move as the window
scrolls. Pressing the Asterisk key resets
the program counter to the asterisk’s cur-
rent position in the source. Pressing Ctrl-
Bsets a breakpoint. Sim8051 prompts for
anaddress, but the position of the asterisk
is the default.

As many as 25 breakpoints can be set.
In addition to breakpoints on the pro-
gram counter, Sim8051 offers traps to
monitor registers. You can specify thata
break should occur if some register is less
than, equal to, or greater than some val-
ue. Three traps may be set per register.

Defining a trap couldn’t be simpler.
Simply press the = key, then type a trap
expression such as R5) 17. You'll recall
that the 8051 has four distinct RS regis-
ters. Sim8051 only traps the register in
the bank that’s active at the time the com-
mand is issued. Different registers can be

Microprocessor
simulators reside in
the development
system’s RAM and
precisely mimic the
operations of the
target processor as
it executes the
programmer’s
code.

trapped in different banks, but unfortu-
nately you can’t set traps for the same
register in different banks.

Pressing Ctrl-V sets a memory trap
that breaks when the specified byte is as-
signed the specified value. You can’t
specify inequalities, and only one mem-
ory trap may be active at a time.

The data window shows eight bytes, in
hex on the upper line and in ASCII be-
low. The window can be set to track dif-
ferent address spaces. For example, if set
to R1 it will show what R1 points to as the
register changes. Using the Upand Down
cursor keys, you can cycle through four
indirect modes (R0, R1, PC, and PD)and four
direct modes (Code, Data, Bit, and Special).

Below the data window, the display
shows the contents of all the registers in
hex. The first few words on the stack are
listed vertically down the middle. A bul-
let next to a register denotes what the
data window is tracking. You can change
the value of a register simply by typing an
assignment statement such as R7=0F.

The entire right side of the display is
consumed by a flow window that shows a
flowchart of the program as it executes.
This feature appears to be a novelty at
first but is quite a useful tool. The appear-
ance of the flowchart is enhanced if spe-
cial comments are included in the source

todescribe and document the structure of
the program.

The flow window can be replaced by a
histogram of program execution by
memory region. When the simulator runs
at full speed (about 1 to 3% as fastas a
real 8051), the histogram automatically
replaces the flow window. The instruc-
tion pointer is sampled at regular inter-
vals (the default is every 50 instructions),
and the graph is updated accordingly.

By default, the histogram divides the
monitored range into 16 regular inter-
vals. It would be far more useful if the
zones in the histogram could be set to rep-
resent function boundaries. As it stands,
the intervals must be regularly spaced
and don’t reflect the structure of the pro-
gram at all.

Special comments in the source code
mark which portion of the program is to
be traced. Everything outside this range
is run at full speed, so you can put de-
bugged functions outside the trace range
and trace only the functions you're study-
ing. The problem is that you can only
trace one contiguous range of code. To
move functions in and out of the debug
range, you must restruclure your entire
program.

Scripts are available to stimulate -
put ports. File STIMULUS_HEX is loaded if
found and supplies a byte at one of the
four ports at regular intervals. This
mechanism is rather weak, and the re-
served file name can be inconvenient if
vou ever want more than one file.

AVSIMS51

Avocet makes simulators for a wide vari-
ety of small CPUs and microcontrollers,
including AVSIMS5I for the Intel 8051
and 8052. These remarkable simulators
actually let you watch the workings of the
Processor on screen as it executes yonr
code, providing probably the closest thing
to a perfect simulation. You can run pro-
grams on this simulator that would crash
an ICE.

=]
1
E5
e
#
e
§
¥

EEiEaney wn
———

geag BTV

BB BNEE

it
:

s

¢

b
1

el 1
i

ol

-
<]

mEeR geTe
2308
5 g

=, | "I...‘

BEME

AR R e

B AEERA
BUHE SBUR

B ;
BONSIREERE® N

Easis)

By

ELT
B

BE

408
:'.II:L
Helere Comund - 2T

Dews Dwawessisa g:nlnrmh m: I L

EMBEDDED SYSTEMS
PROGRAMMING RATES

L3
|
-

AVSIMS51 v. 1.37

Available From: Avocet Systems Inc.,
120 Union St., Rockport, Maine
04856, (800) 448-8500, or (207) 236-
9055 in Maine

Price: $379

Sepport: Free telephone support for
registered users

System Requirements: IBM PC or com-
patible, 256 kbytes RAM

Everything about the CPU’s workings
is displayed along with simulator status,
disassembled code, and two memory
dump windows. It takes a while to get
used to, but you can find out anything you
want to know at a glance. It would be an
improvement, though, if the different
screen regions were separated from each
other by visible borders or displayed in
different colors.

Driving the simulator is easy. It oper-
ates in two modes: display and command.
In display mode, you position the cursor
over the value you want to change and
change it. Use the arrow keys to position
the cursor or use shortcuts such as Cirl-
A, which jumps to the accumulator.

A value is changed by editing the dis-
play or by using + and - to increment or
decrement. Many values are displayed in
more than one format; for example, the
accumulator is shown in binary, hex, and
ASCIL A change in any of the three
changes contents of the accumulator.

Pressing Esc toggles between display
mode and a command mode that’s really
a menu tree. Highlight the choice and
press Enter or simply press the initial of
the choice.

Pressing F1 runs the simulator at full
speed, making the display look like a pin-
ball machine gone wild. Portions of the

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 71

display can be selectively disabled from
updates during full-speed execution, thus
making the simulator run even faster.

F10 single-steps one op code while F9
undoes one op code. The undo operation
works on registers and memory changes,
50 F9 really runs the program in reverse.
This isn’t simply a trace backward for re-
viewing the recent history, but true back-
ward execution. You can hit a breakpoint
and run in reverse to see how the program
got there. You can even back up, make a
change, and go on.

A wide variety of breakpoints is avail-
able, and there’s no limit to the number of
breakpoints. A breakpoint can be set to

trap when a register or address contains a
specified value, falls within a range of val-
ues, or matches a bit mask. You can also
trap the occurrence of some op code when
a register or address is accessed (read or
written) or just when it’s written to.
Breakpoints can be permanent (stay set
until explicitly cleared) or one-shot
(automatically cleared after use). All
breakpoints except the op code type can
have an associated passcount.

The op code breakpoint is a convenient
way to jump to the end of a subrontine or
interrupt. To set an op code breakpoint,
you enter the mnemonic and sample ar-
guments. The arguments are ignored but

SOURCE LEVEL DEBUGGING
IN-CIRCUIT EMULATORS

We also support

DSP: 320C10/1517
320C20/25

«C: B051/52
85C154
80C152
80515/535
SUPER-8
8048/49/50

*

: ’wumr.tt(mw.“

SOURCE-LEVEL DEBUG fer C-51 and PL/M-51
REAL TIME, non

g emulation

+ |IBM-XT/AT/388 d gver a high speed serial port
+ WINDOWS — with EGA and mouse support

» TRACE BUFFER — incrementally fillable

« COMPLEX hardware breakpoints with Pass Counters
» MACROS and session logging

» Program Performance Analysis

+ Stand-alone, NO PLUGHIN bpards

For more information call (213) 450-6096

CIRCLE #233 ON READER SERVICE CARD

72 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

are supplied to specify the addressing
mode of the instruction.

The input to the simulated chip can be
driven by a script. The form of inputs is
far more than adequate. The script file is
merely a sequence of bytes. The bits in a
byte may be tied to any port or address,
and each bit may be assigned its own des-
tination. The timing is at a preset I/O
rate measured in cycles. Alternatively,
input can be set to deliver the next byte
whenever a specified register or port is
accessed. This ability is useful for pro-
grams that use polling. The problem is
that input can’t always reflect the simu-
lated environment. What’s needed is a
script that supplies the next value and the
time it’s to be delivered.

The simulator has a limited com-
mand-file ability. You can save all your
keystrokes to a file. Playing back the file
has the same effect as typing the contents
of the file at the keyboard. Command
files can be nested.

I give the manual mixed reviews. It’s
clear, concise, and well cross-referenced.
The tutorial would be great if it matched
the program, but it seems the software
out-evolved the manual and rendered it
inaccurate. The manual is specific to the
MS-DOS version and refers UNIX and
VMS users to Appendix B for instruc-
tions. (Appendix B contains nothing of
the sort, by the way.) I don’t know if other
versions of the simulator come with dif-
ferent manuals, but I suspect parts of it
are changed and other parts are common.

THE BOTTOM LINE

Sim8051 and AVSIMS51 both promise to
help programmers debug code for em-
bedded applications. Both provide fairly
full emulation of the 8051 and 8052.
Sim8051’s source-level compatibility
with Archimedes C makes it the natural
choice for users of that compiler.

Sitill, if I had to limit my purchase to
one of these products, I'd choose
AVSIMS5I. It was thoughtfully designed
around just those features that are impor-
tant during debugging. With AVSIM51,
your days of waiting in line to use the ICE
4rc Over.

John M. Dlugosz is a programmer and
analyst with Conductor Software in Ir-
ving, Texas.

Embedded Systems
Programming is looking
for a few good authors.

Upcoming issues will feature
articles on all aspects of
designing, coding, debugging, and
integrating real-time systems.
We’'ll review cross-assemblers, in-
circuit emulators, C compilers,
CASE tools, and Forth.

And ¥YOU can be part of it!

We're looking for in-depth
technical articles that outline
good coding practices and design
strategies.

1889 Editorial Calendar
February .. Algorithms & Productivity
Mareh -ooes e Scheduling & Tasking
April ... High-Level Languages
MR s e e B Design
dune ity ...Digital Signal Processing
July...... .- Prototyping
BHENSk i e o vk e ST 28 il RISC
September Real-Time Programming
Ty e e e e e Ada
NWowember .05 il lnn eahy Integration
December..... ...l Optimization

Send articles, outlines, and
queries to:

J.D. Hildebrand, Editor
Embedded Systems Programming
B0OO Howaxrd St.

San Francisco, CA 84105

For a complete author’s kit,
including writer's guides, review
procedures, a technical referee
qualification form, and an
expanded calendar, contact
Christine Dunn at (415) 397-
1881, ext. 526.

Embedded Systems
Programming, It's more
than a byline.

. It’s an adventure.

e Global Optimization
Features

e Produce Re-entrant,
ROM-able Code

e Full Macro Capabilities
¢ Include Complete
Utilities Set

Source Code Level
® User-Friendly Interface
and Command Set

InterTools are available
for VAX, SUN, Apollo,

HP. IBM PC, and other
engineering computers.

Demo Disks available.

InterTools

Time Saving Software
For Embedded System Development

68000/010/020, 8086/186/286
68HC11, Z80, V Series

C Cross Compilers

e Utilities include
Linkers, Locators,

Formatters, and Unique
ROM Processor

Cross Assemblers

e Support Relocatable,
Combinable, and
Absolute Segments

XDB Cross Debuggers

® Debug at C or Assembly

® Powerful Assertion,
Breakpoint Commands

¢ Direct Command
Interface to Emulator

Intermetrics, Inc.

Software Products Division
733 Concord Avenue
Cambridge, MA 02138
(617) 661-0072

Toll-Free: 1-800-356-3594

CIRCLE #234 ON READER SERVICE CARD

oo

S PRODUCTEVALUATION

by John M. Dlugosz

Debugging with ICE

n in-circuit emulator is a power-
A ful device. It has an on-board

computer that interprets a com-
mand language and drives the emulator
based on your commands. The simplest
configuration is to simply attach a dumb
terminal to the ICE. This lets you com-
municate directly with the emulator and
issue low-level commands from the con-
sole. Sometimes a PC is pressed into ser-
vice as a terminal emulator. With the
power of today’s PCs, this is drastic over-
kill—sort of like using a nuclear reactor
to power a toaster.

It’s natural to imagine that you could
program the PC toissue commands to the
ICE on your behalf, parsing high-level
macro statements into the low-level di-
rectives understood by the ICE system. A
number of products on the market do pre-
cisely this, serving as front-end debug-
gers for ICEs. Such front ends vary; some
are simple filters, while others are com-
plete and robust development environ-
ments. This review presents my impres-
sions of three ICE-based debuggers: a
simple one, an average one, and an ad-
vanced one.

MICROTEK USD

Microtek’s Universal Symbolic Debug-
ger (USD) is a front end for Microtek
ICEs. It runs on a PC, Sun, VAX, or
MicroVAX.

Installing the program is simple: just
copy the disk into a hard-disk subdirec-
tory or onto a floppy, then edit a text file
containing system setup information (in-
cluding the display mode and COM port
number). The protocol setting can also be
changed. Use the speediest transfer rate
the PC will handle or specify that the op-
tional parallel interface is installed.

Simple as it is, the requirement to edit
a text file is a sore spot. It’s just one more
thing that can go wrong during setup. Al-
most every program ['ve ever seen can
figure out for itself what video mode to
use. The port number could be specified

EMBEDDED SYSTEMS
PROGRAMMING RATES
MICROTEK USD

Avaitable From: MicroCASE Inc.,
19545 N.W. Yon Neumann Dr., Bea-
verton, Ore. 97006, (800) 547-4445
Price: $500

Support: One-year warranty, free tele-
phone support

System Requirements: IBM PC or com-
patible, DEC VAX, or Sun work-
station (PC version was tested);
Microtek in-circuit emulator

with a simple /1 or /2 on the command
line with a built-in default. The text-file
approach is OK, but the program should
use reasonable defaults or figure out if an
item is missing.

As for the ICE, no setup is needed; the
emulator detects and automatically con-
figures itself to conform to the protocol
being used.

USD acts as a filter between the pro-
grammer and the emulator. It’s “ICE-
command transparent,” meaning any-
thing you can type at the prompt on a
dumb terminal can be typed at the USD
prompt. But USD includes significant
enhancements beyond these.

First, it simplifies uploading and
downloading to the ICE. A simple com-
mand transfers a file between your disk
and the target. Second, it adds symbolic
support. When you enter an emulator
command, a name preceded by a percent
sign is recognized as a symbol. USD looks
up the value and replaces it in the com-
mand line sent to the ICE. It also recog-
nizes addresses coming back from the
ICE and replaces them with symbolic

74 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

names before displaying them to you.

The last major feature is the com-
mand file, which is nothing more than a
text file with ICE commands in it. It’s
loaded into memory and executed like a
macro or batch file. It features replace-
able parameters, IF, 6070, and a LOOP con-
struct, allowing you to extend the ICE’s
command language by building your own
high-level procedures. This capability
greatly increases the power of the system
and eases the debugging process.

The manual has different installation
pages for each host. The rest of the docu-
mentation is common to all hosts—which
is OK—but is also common to all targets,
which is not. Why should an 8051 pro-
grammer have to read examples in 68000
assembly language? It makes it tough to
figure out what’sa USDism (percent sign
before names) and what’s part of the as-
sembly language, unrelated to the exam-
ple (pound sign before numbers).

The manual is brief. Since the lan-
guage is a superset of the regular ICE
command language, only the enhance-
ments are covered. There are three pages
on symbols and seven on file processing,
with most of the manual (40 pages) de-
voted to the command-file facility.

SOFTSCGOPE

SoftScope is available in simulator and
emulator versions for the 8086 family of
CPUs. It’s available from Concurrent
Sciences or from Applied Microsystems
(which markets the product as Validate
XEI) with the ES-1800.

The program runs on IBM PCs and
compatibles under DOS 3.0 or later. The
target may be any member of the 80x86
family. The emulator version requires an
Applied Microsystems ES-1800. Source-
level debugging is supported in a number
of high-level languages, including Intel
assembler, PLM, Pascal, and FOR-
TRAN; Intel, Lattice, and Metaware C;
and PSS Jovial.

To install the program, just place the

EMBEDDED SYSTEMS
PROGRAMMING RATES
SOFTSCOPE

o

Availahle From: Concurrent Sciences
Inc., 105 S. Washington St., Moscow,
Idaho 83843, (208) 882-0445

Price: $1,000-$2,000

Support: One-year warranty

System Reguirements: IBM PC or com-
patible, 256 kbytes memory, DOS 3.0
or later, Applied Microsystems ES-
1800 ICE

supplied disk in drive A and run the in-
stallation program. The problem in my
case was that there was no disk! [decided
to look over the simulator version and
found its disk contained the emulator
software. I never did find the simulator
program.

After copying the debugger onto the
host, you must set up the ES-1800. If you
use COM2, you must also edit the config-
uration file. You then attach the cable
between your computer and the terminal
port on the ICE. 1 borrowed the 25-
pin/9-pin adapter that came with my
mouse to accomplish this. You then pop
the front panel off the ICE and twiddle
the thumb switch, turn everything on and
run the program, go into setup mode
(which turns the program into a dumb
terminal emulator), and issue commands
tothe ES-1800 to save the proper settings
inthe ICE’s EEPROM. After waiting for
EEPROM-burning, you quit the pro-
gram, shut off the emulator, twiddle the
thumb switch back to “use EEPROM
settings,” button it up, move the serial
cable to the other port, turn the emulator
back on, and manually start SoftScope.

The process isn’t as bad as it sounds. If
you know the ES-1800, the procedure is
apparent without reading SoftScope’s
instructions.

This product appears at first glance to
be a simple monitor-style debugger. All
the output is in the tradition of a glass
teletype. Most commands can be abbre-
viated to a single letter: L to list source
code, S to single-step, etc.

SoftScope reads your source file and
symbol table when it downloads the pro-
gram. You can use symbol names as ad-
dresses in commands, and disassembly
can be matched to the source code.

The real-time trace buffer can be ac-
cessed and displayed in a variety of useful
formats. Showing source lines or individ-
ual source statements with disassembled
instructions in a trace-backward form is
one of the most valuable debugging
methods. However, SoftScope insists on
displaving the trace upside down with the
most recent lines on top.

One nice display lets the programmer
examine the stack; it shows all the pend-
ing function calls and, optionally, the
source lines that contain the calls.

Any number of code breakpoints can
be set. Hardware-cycle breakpoints are
part of the 60 command. You can 60 until
a specific hardware condition is met us-
ing the power of the ES-1800’s logic ana-
lyzer.

SoftScope’s best featureisits ability to
handle typed data. It can handle simple
types, such as integers and strings, as well
as structures and arrays. Just type the
variable name preceded by a period, and
its value is displayed in a meaningful
form consistent with the declared type.
Changing memeory is just as easy. A sim-
ple assignment statement changes the
value of any variable, array element, or
structure member.

The on-line help is good. The HELP
{keyword} command brings forth volumes
on any subject. The entire command ref-
erence manual, with both appendices, is

It’s common to
press a PC into
serviceas a
terminal and plug it
into the in-circuit
emulator, but with
the power of
today’s PCs this

is drastic
overkill—sort of
like using a nuclear
reactor to power

a toaster.
Debugging software
takes the next
logical step, making
the PG issue
instructions to the
IGE on your behalf.

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 79

|
|
|
.

—

e T e e R R e i L B L Al S e T

—.

THE FUTURE OF THE BUS/BOARD
INDUSTRY IS HERE NOW...AND IT’S
AT BUSCON/89-WEST

N

There’s something exciting going on in the bus/board Whether you're interested in NuBus, VME, Multibus or
industry these days...the future. other bus/board architectures, you'll find more products,
New chips. New products. New technology. And ever- services and solutions at BUSCON than ever bgrore.
increasing choices. There's a world of difierence Because the BUSCON Show and Conference has
between the bus/board industry of today and the ane of grown right along with bus/board technology to become

tomormow...a world that's waiting for you at the industry event. In fact, BUSCON has doubled in size
BUSCON/89-West. : in the last two years alone.

GET A FIRST-HAND VIEW OF THE FUTURE...
PLAN NOW TO ATTEND BUSCON/89-WEST!

Sponsoring Publications: Computer I_ NIRRT, o e ae s T G e i L e _I

Design, Computer Technology Review, O YE§.i am interested in attending =

Control Engineering and the BUSCON/83-West, the bus/board industry event. e |

Microcomputer Interface Group, EDN, O |am interested in exhibiting. Please send me more SR

ECN, EETimes, Electronic Buyers’ I information. BUSCON/89-WEST l

News, Electronic Design, Elecironic KR o3 FEBRUARY 7-9. 1885

Products, ESD, IAN, I&CS, InfoBus S S TR CLARA CA e |

Report, SuperMicro, UNIX World, ﬁb o ' L

VMEBus Systems Magazine, VME el —— g ETrEw I

News, Embedded Systems Adaress e —

Programming. I City T L SestGuRie o R R ia ‘
Phaone {) h BW2

g?gmcéagggﬁgg“g“[géwmm MMG, RETURN TO: CMC, 200 Connecticut Avenue, Norwalk, CT 08356-4900 (203) 852-0500.

CIRCLE #235 ON READER SERVICE CARD

EMBEDDED SYSTEMS
PROGRAMMING RATES
XRAY/68K

Available From: Microtec Research Inc.,
2350 Mission College Blvd., Santa
Clara, Calif. 95054, (408) 980-1300
Price: $3,500-514,000

Supporl: Depending on host, one-year
warranty provides maintenance and
update of product and response to doc-
umented software performance
reports.

System Requirements: 640 kbytes mem-
ory; DOS, UNIX, or VMS; Applied
Microsystems ES-1800 emulator

available on-line.

In short, SoftScope is a very powerful
and effective debugging tool. Its symbolic
support and typed data display are great.
The user interface can be frustrating,
though. I wish you could ask for the trace
or disassembly display and scroll through
it using the cursor keys. As it is, you get a
single screenload and must press Q toquit
or any digit (one through nine) to request
more lines. There’s no way to back up.

The system ought to be made crash-
prool as well. When [uploaded a garbage
file with a valid source file, it locked up.

XRAY/68K

XRAY /68K is available for use with or
without ES-1800 for the 68000 family. It
runs under MS-DOS, UNIX, and VMS.

Setting up XRAY and the ES-1800
requires the same ritual as for SoftScope,
but the settings are all different. Fortu-
nately, the ES-1800 can hold two sets of
user settings in its EEPROM. The man-
ual is good, with clear setup instructions
and a tutorial.

This program will dazzle you from
screen one. It is a source-level, window-
oriented debugger with separate win-
dows for source and assembled code, reg-
isters, stack, data, watchpoints, etc. You
can configure the display to your needs
and even define your own windows.

The high-level screen shows the source

code with a highlight over the current
line, a data “watch” window, a trace win-
dow, and the command window. Pressing
F9 executes one line. The single-step
command is slow in this mode; there's a
noticeable pause before execution ad-
vances to the next line.

F3 switches to the assembly screen.
The source window now shows mixed
source and assembly, the trace window is
hidden, and stack and register windows
become visible. If these screens don’t suit
your needs, you can rearrange and recon-
figure to your heart’s content.

Programmers control XRAY /68K
by pressing function keys or by typing
commands in the command window. The
command capability is fantastic. You can
define macros that are essentially user-
defined procedures, in effect extending
the debugging language. It will interpret
any legal C expression. Control flow is
like C’s, with if. . .else, while, do, and for
statements.

Commands can be run in the com-
mand window, of course. A command
can also be attached to a breakpoint and
automatically run when the breakpoint is
tripped or attached to a window and run
every time that window is displayed.

Thecommand capabilityisa real trea-
sure. Better than a simple breakpoint, it
almost encourages you to write a little
procedure to check for anomalous condi-
tions and attach it to a particular point in
the code. When the breakpoint is tripped,
the macro is executed. The macro may
pass control back to your application or
generate a break condition.

XRAY /68K is a true source-level de-
bugger. You can step a source line at a
time, dump all local variables (formatted
for their declared type) for a function,
and examine the calling sequence of
pending functions. You can debug on a
high level in the context of the language
you used when writing your code.

One especially useful command is
printf, which lets you access program
data and print it in any format. The ex-
pand command shows all local variables
for any or all pending functions.

For C programming, XRAY /68K of-
fers a library of simulated 1/O routines.
These let you use standard input and out-
put in C programs run on the emulator,
even if you haven’t written [/O primi-
tives. Soif you were writing a program for
a toaster, which doesn’t have any output

XRAY/68K’s library
of simulated 1/0
routines lets you
use standard input
and output in G
programs even if
you haven’t written
170 primitives. So if
you’re writing a
program for a
toaster that doesn’t
have any output (the
toast doesn’t count)
you could still use
printf statements
for debugging
purposes.

(the toast doesn’t count), vou could still
use debug printf () statements in your de-
velopment work.

XRAY /68K also provides an on-line
help facility. An index window pops up
and you pick a topic by moving a high-
lighted bar with the cursor keys. The help
is good, but the index is off by one. You
have to pick the topic after the one you
want to see.

XRAY /68K, the ES-1800, and Ap-
plied Microsystems’ C compiler form a
powerful, well-integrated system. This is
my favorite of the debugging tools re-
viewed this month.

John M. Dlugosz is a programmer and
analyst with Conductor Software in Ir-
ving, Texas.

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 77

Macros support “C” expressions and operators.
Pass unlimited numbers of parameters with

typing information.

Custom triggerCHIP set provides limitless
sequential/recursive trigger capabilities.

Trigger on any or all address, data, status lines.
Ranges and bit masking supported.

Register breakpoints support breaking on
contents of or access to registers, including
ranges and inversion.

— True hardware execution breakpoints,

FIND BUGS FASTER WITH
MICROCOSM’S TRIGGERCHIP SET

Microcosm'’s hyperlCE product line gives you the information you

1c)rf ist, accurate debugging of 16 and 32 bit microprocessor-hased

set allows four levels of sequential and recurs
triggers for designing your system and rooting out bugs buried under layers
of code.

Trigger on any target condition—address, data and status lines, even
up to 8 lines of an optional logic probe. What's more, new trace or break
definitions can be loaded Llunm, realtime emulation. The triggerCHIP set
monitors your system continuously. With Micro-

Cosm’s h\]. system, you've got the draw on
all your bugs, no matter how complex your
system d&i&,ﬂ

With the hyperICE system, you
don’t need to walk through code,
line by line, visually monitoring

Microcosm's ICE supports the 80386, 80286, 80186/ 188, 8086/ 88, 68000/ 10/ 08, MCS-51
G8IICI, and 64180 microprocessors

register activity. Register Break-

points automatically break on

contents or access of a register

for faster debugging. Hy

ICE is the only in-circuit

emulator Lo give you full-

featured trigger capabilities, register

breakpoints, fully-qualified trace azd high-level
language debugging, coupled with realtime emulation.
your hum are an easy

Using }mlt‘!‘l(E,

1're ready for Micro-
lnt) \‘."v'll x‘im\\ you the

' MICROCX
15275-E SW. Koll Pkwy., Beaverton, OR 97006

bperilE. wigerCHIF and Microc

o e Wradesucks of Moo b

CIRCLE #236 ON READER SERVICE CARD

®ATTHEBENCH

by Ernest L. Meyer

Walk;, Trot, or Gallop?

s memory systems grow beyond
A 16 kbytes, simple memory tests

become increasingly inadequate.
When you think that a 1-Mbit chip s the
same size as a 16-kbit chip but contains
64 times as many memory cells, it’s hard-
ly surprising that the chip must be tested
much more thoroughly. In fact, evena 64-
kbyte memory is prone to highly complex
errors that simple memory tests will miss.

Memory error diagnosis is therefore a
growing concern to embedded systems
developers as the average memory size in
embedded systems increases. Because
memory tests are highly repetitive, how-
ever, a more complex test doesn’t need a
great deal more code space. A few added
bytes of code can vastly improve the test.

On the other hand, a more thorough
test does take longer to run. Nested loops
keep the code size down, but the test time
can be as long as minutes, or even hours.
A shorter test may be preferable in some
situations. As we shall see, there’s a sur-
prising variety of possible test routines.

Manufacturing tests should be as
thorough as possible. Running even min-
ute-long tests on the production floor
with multimillion-dollar automatic test
equipment would prove exorbitantly ex-
pensive. Therefore, it’s even more sensi-
ble to embed manufacturing tests in the
code. Then the units need only be plugged
in and turned on to run a thorough mem-
ory test.

This technique, called BIST, also sim-
plifies error diagnosis in the field afier the
units are shipped. The user can identify
problems by running the test remotely.
All the manufacturer may need to do is
send a new chip to plug in, thus cutting
field repair costs as well.

RELIABILITY ISSUES

The usefulness of a memory test is partly
defined by a bathtub-shaped reliability
life curve. The curve drops sharply in the
early stages of system life due to “infant
mortality.” About half of bad compo-
nents fail in the first day or so of use, so
manufacturing tests should be thorough.

Built-in self-test
algorithms for
catching errors in
solid-state memory
automate error
diagnosis—on the
manufacturing floor
or in the field.

The level middle region is our real con-
cern. Itindicates a relatively low, random
failure at an average frequency indicated
by the manufacturer’s component failure
rate. The memory component failure rate
may be between 0.03 and 0.3% per 1,000
hours in a typical system.

The failure rate for an individual com-
ponent is multiplied by the number of
components on the board to get the sys-
tem failure rate. Failure rates quickly
add up. For instance, if the board con-
tains thirty-two 64-kbit chips with an er-
ror rate of 0.18% per kilohour, one quar-
ter of the shipped products will fail within
the first six months of use.

It’s advisable to perform run-time
memory tests at regular intervals. Typi-
cally, these tests are executed every time
the system is turned on. Using a hard-
booted test helps ensure memory diag-
nostics can be run after a system crash.

TYPES OF FAILURE
There are two basic types of memory fail-
ure: soft errors and hard faults. Soft er-
rors are usually caused by stray radiation
at run time and aren’t permanent. Soft-
error frequency occurs 10 times as often
in NMOS as in CMOS RAMs.

Hard faults are more serious since
they are caused by wires fusing out and
necessitate replacement of at least one
chip. They can be opens (burned-out
wires) or shorts (cross-connected wires).

Hard faults have varying effects, de-
pending on where they occur. Both shorts
and opens can have static or dynamic ef-
fects. Static faults don’t change over time
and can be found relatively quickly. Dy-
namic faults are more difficult to spot,
since they are often manifest only after
particular sequences of events.

Figure 1 shows a typical dynamic
memory system structure. Faults can oc-
cur in the decoder, refresh, driver, or
sense amp circuitry or in the matrix of
memory cells themselves. Finding the
faults requires writing data to specific lo-
cations in the memory matrix; it’s often
necessary to know the length (in number
of rows) and width (in number of col-
umns) of the memory cell matrix. This
information can be obtained from the
chip manufacturer.

Most memory chips store one bit of
each memory word. All the following
tests assume a bit-wide memory chip
structure; nibble- and byte-wide memory
chips may require different test step in-
tervals to achieve the desired pattern of
ones and zeros.

The tests are presented here in a ge-
neric high-level notation. It’s worth men-
tioning that the variables used in the ac-
tual test code will be destroyed by the test
il they are stored in the area of memory
that’s being diagnosed!

Ideally, the variables should be stored
in a CPU register. If no registers are
available, the variables should be written
to an absolute location and moved half-
way through the test. Alternatively, var-
iables can be replaced by absolute values
wherever possible.

Also, most of the tests run twice, the
second time with complemented data.
Rather than looping through a procedure
and passing ones instead of zeros through
the procedure call (and vice versa), the
loops can be expanded.

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 79

=]

ke

=

preferable for systems larger than 64
kbytes. Ona zero background, the system

Address sent from memory ————— Decoder Circuitry

— e -
e A et et M T

A

Column Drivers

Refresh Circuitry

= o

D
Memory Matrix L
i
v
e
r
s
Sense Amps

Output Driver

Figure 1

Architecture for a

typical dynamic

memory system.
ERRORS IN THE
MEMORY MATRIX
The most obvious type of fault occurs
when a cell in the memory matrix is
“stuck™ by a short or open. Most soft er-
rors manifest themselves as stuck-at-zero
and stuck-at-one faults.

The Sequential Write/Read test (see
Listing 1) is the most obvious matrix test.
Zeros are written sequentially toeach ad-
dress in memory. After each write, the
addressed cell is read to see if the bit was
successfully written. The test is then re-
peated with ones instead of zeros.

This test is of order N complexity and
constitutes the simplest possible memory
cell test. The test checks for the existence
of any cell opens or shorts that have tied
the storage cell to a high or low value.
Unfortunately, single-cell faults are the
least common type of fault and the test
finds very few other types of errors.

The Sequential Write/Read test can,
however, identify a soft error if the sys-
tem hasn’t been powered down since the
error occurred. If the system fails the se-
quential test before power-down, but
then passes the test after the power is
switched off and back on, a soft error has
occurred. Since about a third of all
NMOS errors are soft, they're worth
checking for.

Not all matrix faults are of the “stuck-
at” variety. If a short occurs between two
storage cells, writing a value to one mem-
ory location will change the value in its

-«+—— Data sent back to memory

neighbor. The GALPAT test (explained
later) will find these faults.

DRIVERS AND
DECODERS

The row and column drivers below the
decoder circuitry turn on an individual
memory cell and force it to a high or low
value during memory writes. Faults in
the row or column drivers affect the xth
bit of every y memory word.

Driver faults are the most common be-
cause the row and column drivers use
more power and, as a result, get hotter
and burn up faster. If test time or test
code length is a concern, a simple driver
test (Listing 2) can be performed in
which only one bit is tested in each row
and column.

The decoder circuitry in a RAM sys-
tem interprets the row and column in
which an addressed memory cell is locat-
ed. Some decoder is inside the memory
chip; some is in separate chips to pick par-
ticular memory segments and subsets.
Hard faults in the decoder circuitry can
result in the same data being written to
more than one location. If a decoder fault
occurs inside the chip, it only affects one
bit. Faults in the decoder chips around
the memory chips, on the other hand, can
have a similar effect on bytes, words, or
entire blocks of memory.

The Walk test (Listing 3) provides a
complete decoder check. Because it has
an N? complexity, though, other tests are

80 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

writes a one to the first cell and then reads
all cells sequentially. After writing a one
back to the first cell, Walk repeats the
process for each cell in memory. The pat-
tern is then repeated for complemented
data.

Walk also tests for memory matrix
opens and shorts. When Walk is used,
sequential write/read isn’t necessary. By
inserting a delay into the write/read/
write cycle, Walk can also be used to test
for sleeping sickness, the gradual loss of
data after it has been stored for a while.

SLEEPING SICKNESS
AND VOLATILITY

The remaining tests deal with dynamic
faults. Sleeping sickness and volatility
are the easiest dynamic faults to find be-
cause they aren’t pattern sensitive: the
fault is manifest regardless of the data
written to RAM.

In dynamic RAM systems, refresh
circuitry keeps data active in the dynamic
memory cells. Hard faults in the refresh
circuitry usually cause sleeping sickness.

Static RAMs aren’t susceptible to
sleeping sickness because they have no
refresh circuitry. However, static RAMs
do have data retention problems. Shorts
between adjacent memory cells in static
RAMs can cause the inversion of stored
data in one direction or the other. This
problem is known as volatility.

The Checkerboard test (Listing 4) is
the most common check for retention
problems. The program writes alternat-
ing zeros and ones (in a checkerboard
pattern) into memory. The pattern is
then checked and the whole process re-
peated for complemented data.

The Column Bar test is similar to

Listing 1
The Sequential Write/Read test.
PROC Sequential():

FOR 1 = 0 TO TopOfMemory
WITE: Ci=0
READ: Ci (=0)
WRITE: (i = N0
READ: Ci (=/\0)
MEXT 1

Checkerboard except that strips of ones
and zeros are used instead of a staggered
pattern. Listing 4 actually produces a col-
umn bar pattern for most chip architec-
tures. (Most chips have an even number
of rows and columns; if there’s an odd

Listing 2

A faster Row/Golumn Driver test.

PROC TestDriver():
TestOriverLoop(RowNidth)
TestDriverLoop(ColusnWidth)

SUB TestDriverLoop(j):
FOR i = 0 TO TopOfMemory STEP j
WRITE: Ci =0
READ: Ci (=0)
WRITE: Ci = AD
READ: Ci (=/\0)
NEXT 1

number of rows, a checkerboard pattern
is produced.)

SENSE AMP FAULTS
Retention problems are relatively easy to
find; sense amp faults are another kettle
of fish altogether. The sense amp circuit-
ry detects the value stored at the ad-
dressed cell during dynamic RAM reads.
Sense amp errors become increasingly
common as the memory matrix size in-
creases. This is especially true in “noisy”
systems, such as battery-run units, where
there’s a great deal of power and tem-
perature fluctuation.

Larger memory chips are more likely
to manifest sense amp faults. Megabit
chips are particularly likely to have faults
because they only use one transistor in
each memory cell and store the memory
value as a charge in a capacitor. Since the
storage mechanism is charge-based, the
memory cells are sensitive to changes in
the electric field. The charges in neigh-
boring capacitors themselves change the
electric field. Sense amp tests should a/-
ways be run with megabit chips.

Listing 3
The Walk test.
PROC Walk():

§
i

FOR i = 0 TO TopOfMesory
WRITE: Ci = 0

NEXT 1

¥alkLoop(0. /D)

WalkLoop(/\0.0)

SUB WalkLoop(j.k):

FOR 1 = 0 T0 Top@fiesory
WRITE: Ci = j

FOR x = 0 TO TopOfiemory
IF x = 1 THEN NEXT x
WRITE: Cx = k

NEXT x

READ: Ci (=])

REXT 1

COMPLETE OPERATING SYSTEM UNDER $20

F68HC11

MC68HC11 + Max-FORTH = System on a Chip

applications, that has low enou
powered if meed be. with WA
down on power consumption when necessary

Well, what [really want is a CMOS mulplu‘fr system for dedicated)
mpurrmnm to be solar-
uld STO modes to really cut

(l_lr_\! 1
lower in
in the 2us range.

te on 10ma typical at § Mhr,
AIT mode, with 2 STOP mode

It’s got to have some advanced features. (oo, fike a built-in, hrﬁa‘k\d kuguatr and an
operating system thai can aufostart my user applications withowut of hassle
lf should have some buill-in EEPROM and some scratch pad RAM . .

L for those imbedded applications. it’s pot to have a watchdog timfr system that checks
j’m) mmpn.l'n operating properly resets the sysiem if there’s a power glitch or

ldsur!orlfﬂ!lmuﬂrmdurmdp-rddpmn

and perhaps a sersal port or iwo . .

mdllmrmrsﬂmtbnmkmndkwmmpuxlaﬁdrbrhewummdwmw!pmt

llnumbrsdupmmggkufl&rmrndlmrn‘mf processor attention and

maybe a pulse accumular,

An A/D converter. wn'bnmnpk of channels would sure be the ticket! It would have to be

ﬁfm lknugk. udmﬂﬁebrmlmgrmﬁngs-ﬂrhfm so the processor can just get
data when needed

And maybe there's a way Imchom_rrdimgm.P(end download the source to the

dedicated system. Perhaps it conld even put the downloaded program into its own

EEPROM ...

Bll!rrlﬂ_r.llirfnu!s,ruﬂnnquiﬂlbwdoﬂnrm.ﬁjnﬂm?murmmrﬁ.

It would be nice if it were smuailer than a bread bavket . .

1 wander how much the first protoiype is going (o cosi_this time? It sure would help if
there was a pretested, full-up version of the system, with a prototyping area built on.

I've goa 2 full featared FORTH and 3n operating system
that can easily antostart an internal or external wser program.

How hout 1/2K EEPROM and 1/4K of RAM.

My watch dog timer and computer operating properly cirenit

is built-in and programmable.

(onfigure me with 5 8-bit parailel ports, or 3 with 2 $4K address and data bos.
I've got two serial ports. one that's 2sync and one thar's sync.

My 16-bit timer has three input captures and 5 outpul compares and &5 cascadable with my
8-hit puke accamalator.

You want A/D? How bout $-bit. 8 channels. ratiometric. 16uS comvenions. with continuom
conversions possible on foar selected channeks.

I"e been known 1o carmy on a convensation with communication packapes and I'e gt
buili-in EEPROM handlers.

How about $37.25 in singles? under $20 in 1000 piece volume?
Vou can hide a compirie operating systrm snder 3 529 pold piece.
Listen, you can buy the NMIX-8422, fl‘dﬂllq-n systemm for 285, 7,

iTry mnhwd-nt wrapped for that price|
mdmbfrrﬂ-!mrmafthumswm \n\\lﬁlﬂuﬂd-mdlhemhnnlnﬂl.
kh’ail.l’mnr_; be dreaming, bmd'anerxm«l_!dbqrumaminm:_.. J Llln I'm available for immediate delivery!
| MosterCard | @ NMIX-0022PS - $265.
Rt Max-FORTH Manual only $30.

NEW MICROS, INC.
] 1601 CHALK HILL ROAD
DALLAS, TEXAS 75212

214/339-2204

63HC11 hardware by Motorola, Inc., F6SHC11
Max-FORTH TM internal firmware by New
Micros, Inc., NMIX and NMIT series boards by
New Micros, Inc.

CIRCLE #237 ON READER SERVICE CARD

Listing 4
The cheﬂgbuard test.
PROC Checkerboard(j.k):
1
i=0
Do:
WRITE: Ci = §
i=1i+1
WRITE: Ci = k
i=1i+1
LOOP UNTIL i = TopOfMemory
i=0
/* optional pause here */
1]
READ: Ci (=])
i=1+1
READ: Ci (=k)
i=1+1
LOOP UNTIL i = TopOfMemory

Unfortunately, faults in the sense amp
are a devil to find. Moreover, each type of
sense amp error—slow write recovery,
pattern sensitivity, or disturb—requires a
different test, as we shall see.

The simplest sense amp error to find is
slow write recovery. In many sense ampli-
fier designs, switching to a new output
value after reading a long sequence of the
same bit value can result in a small delay.
The Shifted Diagonal test (Listing 5) is
designed to find this error.

On a background of zeros, a diagonal
of ones is written across the memory
space. Each column is then read individ-
ually. The diagonal is shifted one stepat a
time so that it sweeps through memory,
and the column read operation is repeat-
ed. The entire process is then repeated
using complemented data.

The effect of a shifted diagonal is to
intersperse a long sequence of identical
writes with one write of a complemented
data bit. Note that in a bit-wide memory
chip the code in Listing 5 will move the
complemented bit across the chip. The
error recovery routine should therefore
reference the count variable, ¢, and divide
it by the word width to find which chip is
at fault.

Shifted Diagonal is a relatively long
test to run, with a 4IN* complexity. It’s
nevertheless shorter than tests for pattern
sensitivity or disturbance.

Galloping patterns, or GALPATS,

Listing 5
The Shifted Diagonal test.
PROC DiagonalShift():

Diagonalloop(1.0)
Diagonalloop(1.1)
Diagonalloop(/\1.0)
Diagonalloop(/\1.1)

NEXT 1

1l
J

SUB Diagonalloop(j.Flag):
f
FOR 1 = 0 TO TopOfMemory

IF Flag = 0 THEN
MRITE: C1 =}
ROTATE j

ELSEIF Flag = 1 THEN
READ: Ci (=])
ROTATE j
WRITE: Ci = j

ENDIF

NEXT 1

look for memory cell opens and shorts,
address uniqueness and decoder errors,
sense-amp interaction, capacitive cou-
pling between neighboring cells, noise ef-
fects, and access-time problems.

GALPATS provide an exceptionally
high degree of fault coverage and are par-
ticularly good at finding pattern sensitivi-
ties, which occur when the value in one
memory cell is changed and different val-
ues are stored in the cells around it. Pat-
tern sensitivity may be introduced when
every bit except one in a column or row is
the same value. More often, individual
cells are sensitive to the values stored
within a two-cell radius.

Listing 6 shows a neighborhood GAL-
PAT. On a background of zeros, the test
cell is complemented and then read alter-
nately with a set of cells in the chip. While
a full GALPAT reads the test cell alter-
nately with every other memory cell in
the chip, a neighborhood GALPAT
reads only a set of cells in close proximity
to the test cell. This sequence is then re-
peated, with each memory cell acting as
the test cell once, and the entire process is
repeated using complemented data.

For a full GALPAT, execution time is
proportional to the cube of the cell count;
for a neighborhood GALPAT, it’s pro-
portional to the square of the cell count.

Ping Pong is a variant of GALPAT.
The address sequencing technique in
Ping Pong is the same; however, instead

82 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

Listing 6
A neighborhood GALPAT.
PROC CheckSensitivity():
i
FOR 1 = 0 TO TopOfMemory
WRITE: Ci =0
NEXT 1
Sensitiveloop(0./\0)
Sensitiveloop(/\0,0)

SUB Sensitiveloop(j.k):
I
FOR 1 = 0 T0 TopOfMemory-1
WRITE: Ci = j
WRITE: Ci + RowMidth = k
WRITE: Ci + ColumnWidth = k
WRITE: Ci - RowMidth = k
WRITE: Ci - Column¥idth = k
/* pause for a while */
READ: Ci (=])
NEXT 1

of using a flat background of ones or ze-
ros, Ping Pong uses alternating blocks of
ones and zeros in a megacheckerboard
pattern. (Additional code is required to
write the background data matrix using
Ping Pong.) While Ping Pong has execu-
tion time and fault-finding capabilities
similar to GALPAT’s, it can also locate
other data-sensitivity problems.

Disturbance is caused by several con-
secutive writes of a complementary value
to the same cell. The continual shifting
from one to zero and back confuses the
memory cell and causes it to contain a
less-than-ideal high or low value at the
end. If the sense amps aren’t sensitive
enough, they can’t determine the final
value in the disturbed cell. In fact, that’s
the main problem with designing a mem-
ory chip: if the sense amps are more sensi-
tive, they’ll have pattern sensitivity prob-
lems; if they’re less sensitive, they’ll have
disturbance problems. Individual chip
manufacturers will report the type of er-
ror that’s more common for each chip
they produce.

Of the three disturb tests—Column
Disturb, Row Disturb, and Surround
Disturb—the latter is best, but takes
much longer to run. Listing 7 is the test
for disturbance in the main routine; List-
ing 8 is the test for row or column disturb.

Column Disturb works on a column of
zeros. The first and last bits of data in the
column are then disturbed by comple-

Listing 7
Test for disturbance problems in main
routine.

PROC Disturb():

FOR i = 0 TO TopOfMesory
WRITE: Ci =0
NEXT i
j=0
Disturblabel-
/* STEP ColumnMidth or Rowiidth */
FOR 1 = 0 T0 TopOTemory
Surroundbisturb(j) /= or QuickDisturb{J] =/
NEXT 1
IF j = 0 THEN j=/\j: 60 ColumnDisturblabel
i

menting them continuously up to 255
times. The last write to the first and last
bits in the column should leave a zero in
those locations. This process is repeated
for the second and penultimate memory
cells in the location, after which the data
in the first and last cells is read. The se-
quence is repeated for every column in
memory, then for complemented data.

Row Disturb is the same as Column
Disturb except the process is performed
on rows instead of columns. The pattern’s
execution time basically depends on the
number of disturbs executed.

With Surround Disturb (Listing 9),
every single cell is disturbed. On a back-
ground of zeros, the system complements
the first cell and repetitively reads the
eight physically adjacent cells up to 255
times. The first cell is then read and re-
stored to zero. This procedure is repeated
for each memory cell.

Memory cells on the edges of the ar-
rays, obviously, have only five neighbors;
the cells in the corners have only three.
However, to achieve higher code compac-
tion, the quirks at the edges and corners
can be ignored.

Surround Disturb finds single-cell
faults and shorts between adjacent mem-
ory cells as well as disturbance problems.
Execution time varies with the number of
disturb cycles. Complexity is Nds, where d
isthe number of disturbcycles and sis the
size of the disturbance ring.

Listing 8
Test for row or column disturb.
QuickDisturb(J)-

FOR x = 1 T0 254 /* must be an even number */
1= A
WRITE: Ci = j
MRITE: C1 +1= A}
WRITE: C1 + ColumnWidth -
1= § /* OR Rowidth */
WRITE: Ci + ColumnWidth -
2= /\j /* OR RowMidth */
NEXT x
READ: Ci (=})
READ: Ci + ColusnMidth -
1 (=1) /* OR RowMidth *

HARDWARE ERROR
CHEGCKING

Hardware can be used for error detection
and correction and can reduce the risk
associated with memory failure. The two
most common hardware techniques are
parity and ECC. Parity detects many
memory errors but doesn’t identify which
memory chip is at fault and why. Soft-
ware diagnosticand recovery routines are
still necessary. ECC, usually achieved by
modified Hamming codes, can correct
single-bit errors but introduces a 25%-
35% memory hardware overhead. ECC
is therefore impractical for most com-
mercial memory systems. [t introduces
additional diagnostic problems because
the ECC code storage space isn’t directly
readable.

Ideally, the ECC subsystem should be
switched off during main memory test.
It’s worth consulting with the hardware
designer to find out if the ECC subsystem
can be made switchable from software.

These steps are only part of the solu-
tion, however. Testing the memory space
used to store ECC codes can be a real
problem. The simple solution is to make
the bit fields used for DATA and ECC CODE
jumper-selectable. After ECC is turned
off and main memory is tested, the stor-
age space used for ECC codes is then
swapped into the main memory space for
a second suite of tests. Naturally, this
makes field testing much more difficult.

Listing 9
Test for surround disturb.
SUB SurroundDisturb(j.k):
{
WRITE: Ci = j
FOR x = 1 70 254
i=ANj
MRITE: CL + 1=}
WAITE: Ci - 1= j
WRITE: Ci + RowWidth - 1= j
WRITE: C1 + RowWidth = j
WRITE: C1 + RowWidth + 1= j
MRITE: Ci - RowWidth - 1= j
WRITE: Ci - RowWidth = j
WRITE: Ci - RowMidth + 1= j
NEXT x
READ: Ci (=)

The alternatives are more complex than
can justifiably be covered here.

Some chips have built-in self-tests to
facilitate manufacturing tests. The most
common memory BIST technique places
four quadrants of the memory matrix in
parallel. The data stored in these regions
is then logically ORed and output as a sin-
gle value, cutting test time by 75%.

Placing the chipina BIST state usual-
ly involves raising one of the chip’s pins to
a high voltage or negative voltage level. If
the required voltages are available in the
system, it may be possible to place chip
BIST under software control.

In very large memory systems, this
course may vield significant overall cost
advantages. On the other hand, it may
require additional chips and board real
estate, which would be greeted with re-
luctance by the hardware designer.

Nevertheless, during production test
full utilization of all available resources
to minimize test time is obviously a desir-
able course. It makes sense to work in
concert with the hardware designer in
these areas to ensure that the final prod-
uct is both functional and testable.

Ernest Meyer is an independent techni-
cal writer and former editor of VLSI
Systems Design. He holds a B.Sc. in phi-
losophy and psychology from Oxford
University.

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 83

OCHIPOF THE MONTH

by Ernest L. Meyer

ISDN Made Simple: National
Semiconductor’s HPC16400

fter years of fretful indecision,
A Integrated Services Digital Net-

work (ISDN) is finally settling
down into a reasonably coherent stan-
dard. National Semiconductor Corp.,
Santa Clara, Calif., has thrown its not
inconsiderable weight behind CCITT
standards Q.921 and Q.931 (as approved
by the T1/D1 for North America) in its
high-performance data communications
controller, the HPC16400.

National’s contribution to the ISDN
bandwagon is based on the 16-bit HPC
microcontroller core. HPC is used inside
a number of sister products, so a panoply
of C compilers, assemblers, linkers, de-
buggers, and libraries on DOS, VMS,
and VAX UNIX platforms is immedi-
ately available for the HPC16400. The
company is alsointroducing an ISDN ba-
sicrateinterface (BRI) software package
for the HPC16400 that may simplify
ISDN code development substantially.

The HPC core is a relatively simple
execution unit. It contains four general-
purpose 16-bit registers (a, b, x, and k), a
16-bit stack pointer, a 16-bit program
counter, three timers, a seven-level inter-
rupt, and a synchronous data communi-
cations channel.

About 60 instructions are available in
the HPC core, with 10 addressing modes.
Most instructions are only one byte long
for efficient code compaction. Jumps and
loops result in particularly efficient code
compaction.

The Microwire/Plus unit inside the
chip core can transmit or receive bytes of
data through a synchronous serial data
link. The Microwire serial link is suitable
for attaching keyboards and LCD dis-
plays to the ISDN system.

THE GHIP

The HPC16400 includes a number of
functional blocks in addition to the basic
HPC core, as shown in Figure 1. There
are 256 bytes of user RAM, a UART,
two HDLC controllers with a decoder

Since the HPG16400
is based on the HPC
microcontroller
core, a panoply of

G compilers,
assemblers,
linkers, debuggers,
and libraries is
immediately
available.

and four separate DMA channels, and
four parallel ports in different shapes and
sizes.

Besides the 256 bytes of on-chip
RAM, the chip can support up to 544
kbytes of off-chip extended addressing
space. Facilities are provided for shared-
memory architectures and direct mem-
oryaccess. These features permit thechip
to reside on the same memory bus as an-
other processor and allow fast memory

Figure 1

The HPC16400 includes a number of
functional blocks in addition to the basic
HPG core, including 256 bytes of user
RAM, a UART, two HDLC controllers with
a decoder and four DMA channels, and
four parallel poris.

r/Heg.
Logic
3 Capture
Registers

REN1/FS/RHCK1

REN2/RHCX2

150 P P
Elg]=|=| ==
=
g
3

84 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

Mced Dedicated Muxed

0 /0 Inputs
L]] L3

PortB Port R PortD

reads and writes, To reduce cost, the chip
doesn't contain user ROM.

The on-chip UART communicates
with terminal equipment. Speed is user-
settable from 8 bps to 208.3 kbps. Stan-
dard UART protocols are supported.

The two HDLC controllers can sup-
portan ISDN BRI D channel at the stan-
dard rate of 16 kbps. The first HDLC can
instead be used to support the ISDN BRI
B channel at the standard 64-kbps speed.
Each HDLC can in fact support data
rates up to 4.64 Mbps, making the chip
usable in Ethernet applications.

The serial decoder, which ties the two
HDLC units to a common external link,
allows the HDLC channels to be used
with single-line X.25 packet-switching
protocols for point-to-point and multi-
point data exchanges.

The parallel ports offer a great deal of
system flexibility. Port A is a 16-bit mul-
tiplexed address/data bus for program
and data memory access. Port B has 12
bits of multiplexed address/data lines,
for direct-mapped access to external I/O
devices, and four bus control lines. The I
and D ports contain the interrupt, Micro-
wire, UART, and HDLC control lines.
The R port is a general-purpose eight-bit
I/O port that can be used for virtually
anything.

THE SUPPORT
SOFTWARE

‘What makes this chip really unique is the
support software. National Semiconduc-
tor has done everything within reason to
make this chip easy to use.

The software package features six
main modules for executive, /O driver,
data link, network, call control, and trace
functions.

The HPC executive provides the oper-
ating environment and general support
services. Intertask communication is by
mail messages deposited in mailboxes
and by semaphores. The executive mod-
ule examines each mailbox in turn and
exercises the requisite activity if the mail-
box contains any mail from another pro-
cess. The modular structure of the code
separates code development into discrete
units, each of which can be developed and
debugged separately.

The I/O drivers are on the lowest tier
and control the Microwire, UART, data
memory, and HDLC hardware. They
also take care of system initialization,

frame reception and transmission, and
error handling. Since X.25 support is ad-
vocated on the data link layer, IEEE
802.3 standards should be attainable
through additional hardware support.

The data link software implements
the full LAPD data channel and LAPB
control signal protocol as described in the
CCITT Q.921 standard and X.25 link
access procedures. The software provides
error-free in-sequence message process-
ing, transmission, and multiplexing.

The network layer module imple-
ments the protocol control procedures of
Q.931—specifically version T1/D1.2/
87-171, ratified in May 1988—to set up,
answer, suspend, resume, and disconnect
acall.

The remaining two software modules
are development tools. The call control
module allows the software engineer to
emulate ISDN phone call placement and
reception during code development and
debugging. Similarly, the tracer module
allows the engineer to monitor the oper-
ation of the software via a terminal at-
tached to the on-chip UART.

ISDN PROTOCOL
SUPPORT

Understandably, there’s still a certain
amount of flux in the ISDN standard,
and it’s natural to ask how National
Semiconductor fits into the picture. The
ISDN standard is a moving target, and
any company that embodies it in silicon
at this early date runs the risk of obsoles-
cence as the standard evolves.

Layers one and two ol ISDN (physical
and data link) are pretty well established
at this point, and the chip is reported to
conform fully to the established stan-
dards. Layer three of the ISDN protocol,
however, is still undergoing some change.
National Semiconductor therefore sup-
ports circuit-switched call establishment
and clearing on both BRI B channels.
Packet-swiiched call establishment and
clearing, because they are still subject to
revision, aren’t supported by the HPC
ISDN software package.

Since this layer of system activity is
totally under software control, however,
it should be possible to adapt the HPC-
16400 to any protocol changes. The pro-
cessor speed seems adequate to cope with
most requirements, and the company is
making the source code available for all
the ISDN software interface modules.

The user can therefore develop packet-
switched call control from the circuit-
switched call control procedures offered
in the network layer software module.

By using a separate socketed EPROM
for program storage, subsequent stan-
dard revisions can be accommodated by
changing only one chip. Alternatively,
because the shared-memory architecture
of the HPC16400 permits the processor
to co-reside in a larger computer system,
programs could be bootstrapped from
some secondary storage medium such as
a floppy disk.

It’s only a matter of time before all the
ISDN functions are fully standardized.
Versions of chips like the HPC16400 will
then inevitably appear with full ISDN
support embedded in on-chip ROM. Un-
til that time (which could still be years
away), the modular approach adopted by
National Semiconductor for this product
may be the most efficient way to use the
manifold advantages of ISDN.

DEVELOPMENT
SUPPORT

National Semiconductor provides a com-
plete development system for the HPC-
16400 including on-line support and full
documentation. The chip itself is $24
each in 10,000-piece quantities. A dem-
onstration disk of the system is available
for $50.

The IBM PC development board for
the chip contains a multitasking execu-
tive in on-board ROM that can setup a
call between two boards and monitor the
software while it’s placing and handling a
call. The board costs $500; in-circuit
emulation for it is an additional $1,500.

The multitasking executive is $5,000
for the object code and $10,000 for the
source code. A generic BRI module is
also available, as are certified BRIs for
the Northern Telecom VMI100 switch
and the AT&T 3ESS protocols. The first
BRI purchased is $10,000 for the object
code and $20,000 for the source code; ad-
ditional BRIs are half price.

Ernest Meyer is an independent techni-
cal writer and former editor of VLSI
Systems Design. He holds a B.Sc. in phi-
losophy and psychology from Oxford
University. Meyer also writes Embedded
Systems Programming’s Ar the Bench
column.

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 85

|

A

|
|

o
|
i

i
1
I

WHAT 'S NEW& IMPORTANT

DEBUGGING TOOLS

Simulator-debuggers
Mecklenburg Engineering
PO. Box 744

Chagrin Falls, Ohio 44022
(216) 338-1900

CIRCLE #184 ON READER SERVICE CARD

ecklenburg Engineering has in-

troduced a line of simulator-

debuggers for a variety of eight-
bit microprocessors. The $95 development
tools are available for 63xx, 65xx, 68xx (in-
cluding the 65C02 and 68HCI11), 8085,
8048, 8051, and Z80 processors. The de-
buggers allow continuous execution, single-
stepping, and breakpoints. Programmers
can access machine registers and absolute
memory locations.

REMBG
Development Associates
1520 8. Lyon St.

Santa Ana, Calif. 92705
{(714) 8359512

CIRCLE #180 ON READER SERVICE CARD

EMS6 is a $479 remote target de-
bugger for Development Associates’
FUTURES6 systems development
language for 80x86 CPUs. REM86 consists
of two parts: a target monitor that requires
less than 2 kbytes of memory space and a
host-based control program that is function-

ally similar to FDT86, DA’s host debugger.

REME6 comes with an immediate-
execution patching assembler and supports
file loading, disassembly, single-stepping,
and a variety of breakpoints. Full symbolic
support is provided for applications written
in FUTURES6.

EMX96

Annapolis Micro Systems Inc.
612 Third St., No. 301
Annapolis, Md. 21403

(301) 269-8096

CIRCLE #1385 ON READER SERVICE CARD

he EMX96 is a $2,995 in-circuit
T emulator for 8096-based applica-

tions. The system allows multiple
hardware breaks on instruction fetch, data
read, write, address, or pattern-match. The
emulator requires an IBM PC, XT, AT, or
compatible. It supports host processor
speeds from 3 MHz to 12 MHz and target
processor speeds from 3 MHz to 18 MHz.
Symbolic debugging support is provided for
ASM96, PL/M96, and C96.

SoftScope Il
Concurrent Sciences Inc.
PO. Box 9666

Moscow, Idaho 83843
(208) 882-0445

CIRCLE #187 ON READER SERVICE CARD

oftScope IIT is a PC AT-hosted

s source-level debugger for 80376

and 80386 target applications. The

system communicates with a firmware

monitor via serial connection. Target pro-

grams can be transferred from host to target
at 100 kbytes per minute.

SoftScope I1I's source-level interface lets

developers simply type symbol names to dis-

86 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

Embedded Gallery

play all variable types—including C and
PL /M structures, multidimensional arrays,
and bit fields—in a formatted display. The
debugger’s command language lets pro-
grammers create C-like macros and use C
syntax with commands. The suggested re-
tail price is $1,500 in quantity one.

BOARDS

ASPI Banshee System
Atlanta Signal Processors Inc.
770 Spring St.

Atlanta, Ga. 30308

(404) 892-7265

CIRCLE #181 ON READER SERVICE CARD

he Banshee System isa PC AT-com-
patible plug-in board for develop-

ment and testing of Texas Instru-
ments TMS320C30 DSP applications. The
$4.995 package includes a mother board
and development software; add-on daughter
boards for memory and 1/O functions are
available separately:.

Two memory options are available.
Dual-access memory is 32 kbytes io 512
kbytes of 35 ns static RAM that can be
accessed by the AT host or by the
TMS320C30 processor with the AT steal-
ing cycles from the DSP. Dual-port memory
is 90 ns static RAM that can be accessed by
the AT and the DSP simultaneously with no
wait states for either processor. The mother
board holds 8 kbytes of dual-port memory.

CPU-186
Computer Dynamics Inc.
107 S. Main St.

Greer, S.C. 29651

(803) 877-8700

CIRCLE #186 ON READER SERVICE CARD

PU-186 is an 80C186-based STD

bus single-board computer for em-

bedded control applications. The
$476 (in OEM quantities) board features as
muchas 512 kbytes of battery-backed static
RAM, 256 kbytes of EPROM, operating
speeds up to 12 MHz, and an SBX inter-
face. An 8087 coprocessor daughter board is
available, asisa complete set of DOS-hosted
software development tools.

LANGUAGES

chipFORTH 8051

Forth Inc.

111 N. Sepulveda Bivd.
Manhattan Beach, Calif. 90266
(213) 372-8493

CIRCLE #183 ON READER SERVICE CARD

orth Inc’s chipFORTH 8051 is a

comprehensive development system

for embedded Intel 8051 applica-
tions. The interactive system, which in-
cludes a multitasking operating system ex-
ecutive, allows mixed Forth and assembly
language programming. It includes a target
Forth compiler and macro assembler, plusa
Cavendish Automation prototyping board
with 16 kbytes of configurable RAM/
EPROM and 8 kbytes of static RAM.

{

Z-PRO
Emulation

I Plus...

Enrn the experience leader in emulation, the widest selection of
microprocessor development support, hosted on IBM* PC-XT/AT,
PS/2™, Macintosh IT™, VAX™, and Sun Workstation®.

C-Thru™ integrated C source-level debugging, including setting
breakpoints and stepping by source line, tracking variables in
native format, stack-frame trace-back.

Show-Tyme™ performance analysis by software activity

distribution and interaction frequencies, with detailed timing
histograms and advanced breakpointing.

EZ-PRO Supports...
5, 1806AC, 6303R, 6301V1, 63701V0, 6301X0, 6303Y0, 6303X, 63031
09E, 6 0RO, 64180R1, (10 MHz), 647180, 6502, 6503, 6504, 6505, 6506,
6507, 6512, 6513, 6514, 6515, 6800, 6802, 6808, 6801, 6803, 68HCO5C4,
68HCO05C8, 68HC05D2, 68HCO5E2, 68HCO5E3, 6809, 6809E, 68HC11A2, 68HC 3
68000, 68008, 68010, 8031, 8051, 8032, 8052, 8344, 80C515, 8035,
8040, 8048, 8049, 8050, 8085, 8086, 80C86, 8088, 80C88, 8096, 8097, 80CI125,
80186, 80C186, 80188, 80C188, 80286, 8X300, 8X305, NSC800, ZB0H, ZiB0
...and more

IBEM

,A american automation

1

Business Machines, VAX amd Mi AX are r
egistered trademark of A if

CIRCLE #238 ON READER SERVICE CARD

2651 Dow Avenue » Tustin, CA » 92680 » Tel: (714) 731-1661 « FAX: (714) 731-6344

chipFORTH 8051 uses an IBM PC or -

compatible as host to write 8051 code and
download it to the chip via a serial link. Us-
ing the PC as a virtual terminal, program-
mers can execute code on the target and see
the results on the host in real-time. Forth
Inc. claims this eliminates much of the need
for an expensive ICE for development and
debugging purposes.

29000 C, assembler
Microtec Research Inc.

3930 Freedom Circle, No. 101
Santa Clara, Calif. 95054
(408) 733-2919

CIRCLE #1388 ON READER SERVICE CARD
icrotec has introduced an inte-
grated software development
toolset for the AMD 29000 fam-

ily of 32-bit RISC processors. The toolset
consists of the MCC29K globally optimiz-

REAL TIME

CROSS-DEVELOPMENT AT ITS BEST

FOR SUN-3, VAX, 80X86, AND MORE...

ing C compiler, the ASM29K relocatable
macro assembler, and the XRAY29K
source-level debugger.

The toolset is available for a variety of
hosts: Sun workstations, VAXes running
ULTRIX, and IBM PCs and compatibles.
The PC toolkit retails for $3,500.

Pascal-2/VMEPROM Link 10
Oregon Software

6915 S.W. Macadam Ave.
Portland, Ore. 97219

(503) 245-2202

CIRCLE #191 ON READER SERVICE CARD

regon Software and Regensdorf,
0 Switzerland-based W. MOOR AG

have introduced the VMS-based
Pascal-2/VMEPROM Link 10, a library
that lets programmers connect either VME-
PROM or PDOS kernel commands in ap-
plication programs written in Pascal.

[Pascal-2 |

Oregon C++

| [Oregon Modula-2 |
1

|
—1 Source-Level Cross-Debugger ————

In-Circuit
Emulator

RS-232
e 680X0

YOU TIME AND MONEY.

POWER TOOLS FOR 680X0 EMBEDDED SYSTEMS
From the leader in compiler technology ..

Callusat 1-800-874—8501 for more information and availability

.Working to SAVE

OREGON /g SOFTWARE

6915 S.W. Macadam Avenue, Suite 200, Portland, OR 97219 USA
TEL: 503/245-2202 FAX:503/245-8449 TWX: 910-464-4779

The followng are trademarks: Pascal-2, Oregon C++, Oregon Modula-2, Oregon Soltware, Oregon
Software, Inc.: SUN, SUN Microsystems. Inc.; VAX, Digital Equipment Corp.

CIRCLE #239 ON READER SERVICE CARD

The package includes the library, a
Pascal-2 cross-compiler, and (optionally)
Oregon’s Pascal-2 native compiler. All run
on DEC systems, including the MicroVAX
and MicroVAX 3500.

KERNELS

MTOS-UX/Ada

Industrial Programming Inc.
100 Jericho Quadrangle
Jericho, N.Y. 11753

(516) 938-6600

CIRCLE #182 ON READER SERVICE CARD

ndustrial Programming Inc. has re-
I leased MTOS-UX/Ada, a complete
run-time support executive for TeleSoft
Ada. MTOS-UX/Ada replaces TeleSoft’s
run-time executive and supports Ada primi-
tives plus access to the full range of MTOS-
UX operating system services via Ada pack-
ages. The operating system supports paral-
lel processing; as many as 16 tightly coupled
CPUs may share the system bus—includ-
ing mixed 68000, 68010, 68020, and 68030
Other MTOS-UX/Ada features in-
clude dynamic object creation, a UNIX in-
terface, mixed-language programming sup-
port, and a range of interprocess communi-
cation functions.

C EXECUTIVE 29K

JMI Software Consultants Inc.
P.O. Box 481

Spring House, Pa. 19477

(215} 628-0846

CIRCLE #189 ON READER SERVICE CARD

MI has introduced a version of its C

EXECUTIVE operating system

for the Advanced Micro Devices
29000 RISC microprocessor. The new ver-
sion of the multitasking operating system is
compatible with other C EXECUTIVE re-
leases, minimizing portability problems for
designers whoseek to migrate from CISCto
RISC.

want 10 Know more anout the proaucts aaveruseda in uns issue ¢

Circle the corresponding number on the postage-paid reader service
card, fill in the necessary information on the card and drop in the

mail. Literature will be mailed to you free of charge by the -
PRODUCT

F----------------------------n------------------------

-
.
1 1 IT] I 1 I Lj-, A. WHAT INDUSTRY DO YOU WORK IN?
1 | i 3 1 '_l (CHECK ONLY ONE)
[] p R “ n . O Consumer electronics/appliances
2 O Computers/peripherals
' READER INQUIRY CARD 3. O Avioniosimarine/spacsimilitry electonics
PLEASE PRINT . yeiomeTsaue
] O Me 5. O Automotive
1 DMR' 6. O Industrial control/systems/robotics
d 7. O Medical electronic equipment
1 Name Title 8. O Test & measurement equipment
] 9. O Independent software contractor/developer
Company
: B. NUMBER OF EMPLOYEES AT YOUR
Address WORK LOCATION:
1 () 1. O under20
1 Depimaist Bh 2. O 20-99
i pLiMat Stop one 3. DO 100-249
- - 4, O 250-999
I Sy State Zip 5. [1000 or more
I 0O Please send me one year (12 issues) of EMBEDDED SYSTEMS
1 PROGRAMMING. Please bill me: U.S. $37; Canada, Mexico $43 surface mail; O ANy R o Dere o
] Other foreign $52 surface mail, $77 air mail. SERVICES TO THE GOVERNMENT?
1 PREMIER ISSUE — EXPIRES MARCH 15, 1989 ; 8 ;(EJS
B |101 102 103 104 105 106 107 108 108 110 111 112 113 114 115 116 117 118 119 120 ’
B 121 122 123 124 125 126 127 128 120 130 131 132 133 134 135 136 137 138 139 140 D. REQUESTED PRODUCTS PLANNED
J [141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 FOR PURCHASE WITHIN
J [161 162 163 164 165 186 167 168 169 170 171 172 173 174 175 176 177 178 179 180 1. O 0-3months
1 181 182 183 184 185 1B6 187 188 189 130 191 192 193 194 195 196 197 198 199 200 2. O 3-6months
i 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 3. O 6-12months .
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 233 240
B 241 242 243 244 245 245 247 248 245 250 251 252 253 254 255 256 257 258 259 260 E. WHAT IS YOUR PURCHASE AUTHORITY?
(CHECK ALL THAT APPLY)
B (261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 1. O evaluate products
§ |281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 208 299 300 2. O racommend purchase
§ | 201 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 3. O specify vendor
i 321 322 323 324 325 326 327 328 320 330 331 332 333 334 335 336 337 338 339 340 4. O approve purchase
1 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
§ Comments

r

1 A. WHAT INDUSTRY DO YOU WORK IN?
] - (cuscx ONLY ONE)
['] p (Y O Consumer electronics/appliances
] ') O Computers/peripherals
Ak h i ! .
" READER I]NQUIJHY CAHD 3. O Avionics/marinelspace/miltary electronics
ystems/equipment
[] PLEASE PRINT 5. O Automotive
1 O MS. 6. O Industrial control/systems/robotics
O MR. . 7. O Medical electronic equipment
] Name Title 8. O Test & measurement equipment
1 9. O Independent software contractor/developer
Company

1 B. NUMBER OF EMPLOYEES AT YOUR
| v WORK LOCATION:
1 () 1. O under 20
I Dept/Maii Stop Fhone 2. 0 20-99

3. O 100-249
: City State Zip 4. O 250-999

5. O 1000 or more
1 [Please send me one year (12 issues) of EMBEDDED SYSTEMS FOR OR DOES YOUR
] PROGRAMMING. Pieass bill me: U.S. $37; Canada, Mexico $43 surface mail; C. DO YOU WORK OR DO

A . . . COMPANY RESELL PRODUCTS OR
[] Other fOrelgn $52 surface mail, $77 air mail. SERVICES TO THE GOVERNMENT?
1 PREMIER ISSUE — EXPIRES MARCH 15, 1989 ; g ;gs
B J101 102 103 104 105 106 107 108 108 110 111 112 113 114 115 116 117 118 119 120 ’
B 1121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 D. REQUESTED PRODUCTS PLANNED
§ (141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 FOR PURCHASE WITHIN
§ |167 162 163 184 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 1. O 0-3 months
1 181 182 183 184 185 186 187 188 189 180 191 192 193 194 195 196 197 198 199 200 2. O 3-6months
i 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 3. 0O 6-12months
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
1 |24 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 E. rgng{:ll? AYLOLUTRHT#RA%';?.%E AUTHORITY?
0 [261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 1. O evaluate products
281 282 283 284 285 286 287 288 289 200 291 292 293 294 295 296 297 298 299 300 ’

[| 2. O recommend purchase
j§ |30! 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 3. O specify vendor
1 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 4. O approve purchase
i 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
1 Comments
]
|

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 760 PITTSFIELD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

E : 4« - \W —-i n
L S
PROGRAM'M I NG
Reader Service Department
P.O. Box 5322

Pittsfield, MA 01203

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 760 PITTSFIELD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

bnbeHuBh IS‘I@HE]HS
(PR O G R A NG|
Reader Service Department
PO. Box 5322

Pittsfield, MA 01203

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Advertiser Index

PG ADVERTISER

91 Adams MacDonald Enterprises
Inc.

90 Advin Systems Inc.
90 Aldia Systems Inc.
Alsys
87 American Automation
67 Annapolis Micro Systems Inc.

-7 Applied Microsystems Corp.
43 Archimedes Software Inc.
91 BP Microsystems

92 Bryte Computers Inc.

76 BUSCON /89-West

Cov2 Cadre Technologies Inc.

18 Datalight

92 Elan Digital Systems

51 Eyring

33 First Systems Corp.

45 Forth Inc.

91 Genesis Microsystems Corp.
91 Grammar Engine Inc.

53-56 Harris Corp.

35 HILEVEL Technology Inc.
21 Huntsville Microsystems Inc.
25 Industrial Programming Inc.
12 Intel

73

Intermetrics
89 Introl Corp.
20 JMI Sofitware Consultants Inc.
35 KADAK Products Ltd.
67 Laboratory Microsystems Inc.

g1 Logical Systems Corp.
Covd Manx Software Systems I[nc.

RS# PG ADVERTISER
253 90 Micro Interfaces Corp.
91 MicroComputer Tools Co.
244 78 Microcosm Inc.
241 92 Microprocessor Report
209 4 Microtec Research Inc.
238 950 NCl
223 91 Needham's Electronics
210 B1 New Micros Inc.
223 95 Nohau Corp.
243 n Oasys
256 88 Oregon Software
235 63 Phar Lap Software Inc.
20 2 Polytron Corp.
P R Quantum Software Systems Lid.

255 26-27 Ready Systems Corp.
Sierra Systems

Signum Systems Inc.

E ¥ Soft Advances

248 91 Softaid Inc.

251 6869 Software Development "89

225 Covd Software Development Systems
219,220 Inc.

Sophia Systems

Systems & Software Inc.
2500 A.D. Software Inc.
234 9095 US Software

V Communications

2z 95 Vesta Technology Inc.
260 65 Whitesmiths Ltd.

2n 3780 Z World

247 8 ZAX Corp.

261

2
9

The index on this page is provided as a service to our readers. The publisher does not
assume any liability for errors or omissions.

* These advertisers prefer to be contacted directly.

JOIN THE ADVERTISERS HALL OF FAME

You too can join the list of illustrious companies that are selling their products to over
25,000 software engineers, project leaders, and embedded developers in Embedded
Systems Programming. As the only publication dedicated to embedded systems, it is
the most targeted and cost-efficient way to reach vour best prospects. Call today for

more information and a media kit!

East /Midwest
(212) 683-9294
Ben-Atar
Nancy Schnarr

February issue
Reservations deadline: 12/2/88
Materials deadline: 12/9/88

West

(415) 995-2431
Ted Bahr
Robert Murphy

March 1989 deadlines
Reservations: 1/2/89
Materials: 1,/9/89

INTROL

CROSS
DEVELOPMENT
SYSTEMS

SAVE Development
and Debugging Time
of Embedded
Microprocessor Systems!

» INTROL-C Cross-Compilers

+ INTROL-Modula-2 Cross-
Compilers

» INTROL Relocating Macro
Cross-Assemblers

COMPILER PACKAGESINCLUDE:
Compiler » Assembler » Linker
» Runtime library, including
a multi-tasking executive «
Support utilities = Full year's
mainfenance

TARGETS SUPPORTED:
6301/03 » 6801/03 « 6809 »
68HC11 » 68000/08/10/12 =
68020/030/881/851 « 32000/
32/81/82

AVAILABLE FOR FOLLOWING
HOSTS: VAX and MicroVAX;
Apollo; SUN; Hewlett-Packard;
Macintosh; Gould Power-
Node; IBM-PC, XT, AT, and
compatibles

INTROL CROSS-DEVELOPMENT
SYSTEMS are proven, accepted
and will save you time, money,
and effort with your develop-
ment. All INTROL products are
backed by full, B e e
meaningful, @ :
technical support. | S
CALL or WRITE
for facts NOW!

647 W. Virginia St.
Milwaukee, Wi 53204
414/276-2937 FAX: 414/276-7026
Quality Software Since 1979

CIRCLE #240 READER SERVICE CARD

®REAL-TIMEDEVELOPMENT TOOLS

Embedded
Marketplace

Want to know more about products and services displayed here? It’s simple: just circle
the Reader Service number on the response card bound into this issue. Each advertiser
will send you more information free of charge!

Embedded Marketplace is a special showcase section reserved for advertisers with
standard 1/9th-page display ads (2% x 3 inches). Cost are $395 (1x), $375 (6x), $355
(12x),and $340 (24x). For more information on how to sell your products to over 25,000
software engineers, project leaders, and embedded developers, call Jo Ben-Atar or
Nancy Schnarr at (212) 683-9294 (East), or Rob Murphy at (415) 995-2475 (West).

IT'S EASY TO LOCATE
ROM SOFTWARE SUPPORT

PC-LOCATE: Produce ROM-able code from your
“exe” files. PC-LOCATE assigns physical addresses
10 the re-locatable image hased on user inputs
PC-LOCATE supports the entire Intel

processor family including the

8086, 8088, 80186, : I
80188 and 80286. f =]
PC- : oF
PROMPAK: -
i

A PROM/ROM expansicn
board for IBM and IBM-
campatible computers = o
PC-PROMPAK provides up | =
to 384 Kbytes of expansion o - !
memoery and supports most ?@/
28-pin JEDEC compatible el
devices.
PC-ROMDRIVE: Create a "Diskless PC" that can
include MS-DOS and your application program. Program
execution can ba automatically invoked through the use

of an “autoexec bat” file ._ =
T ALDRA

SYSTEMS INC.
P.O. BOX 37634 PHOENIX, AZ. 85069
(602) 866-1786

CIRCLE #241 ON READER SERVICE CARD|

ZSO andHD64180

We have the development aids
and tools you need:

= PC-based C cross compiler.

= Cross assembler and linker.

» Remote Debugger.

= In-circuit emulator.

= Single board computer.

= PC Coprocessor with CP/M-80
and ISIS emulators.

Z-World
1772 Picasso Ave, Davis, CA 95616
(916) 753-3722
Fax: 753-5141

CIRCLE £242 ON READER SERVICE CARD

25MHz 48 CHANNEL
PC-BASED LOGIC ANALYZER
$1595.°* + POD PRICE

48 Channels @25MHz X 4K word deep
16 Trigger words/16 Irigger sequence
Automatic setup and loading of symbol tables
Comparison of Reference and Trace Memories
Storage and recall of trace data to disk
12 Channels @ 100MHz w/Glitch Detection Pod
Disassemblers available for:
8088, 8086, 63000, Z80, 8085,
6502, 6801, 6303, 8031, 6809, 6811
NCI [J 6438 UNIVERSITY DRIVE,
HUNTSVILLE, AL 35806

(205) 837-6667
CIRCLE #243 ON READER SERVICE CARD

You neéd a Sailor-8 even if you already have
another EPROM programmer.

* & % DISCOVER WHY: * * *
Sailor-8 is beloved and recommended by soft-
ware engineers. ‘‘Once you used a Sailor-8, you
won't be able to stand anything else.

Please call for free demo disk.

ADVIN SYSTEMS INC. Sunnyvaie, CA 94086
(408) 984-8600 » FAX (408) 736-2503

CIRCLE #244 ON READER SERVICE CARD

PLMAL

B Dcvelopment

RUN INTEL SOFTWARE ONYOUR PC!
| ASMBO o
m . Worksiation

ASMB6

CREDIT

ASM4S

MR of MHSET.

PASCAL

AEDIT

8080 DEBUGGER
£ 105

NOW YOU CAN DEVELOP & DEBUG INTEL CODE ON YOUR PC
e Work up to 5 Times faster on your PC
o No more waiting in line for the Intel "Blue Box"
e No more costly Intel service calls

For Information call: 1'800-888'8086

Micro Interfaces Corp. 16359 NW 57th Ave. Miami, FL 33014
CIRCLE #245 ON READER SERVICE CARD

Multi-Tasking
EXECS

U S Software offers hi-performance software
5} tools for embedded applications.
g Get the full details by calling:
1

1 800-356-7097
g L U S SOFTWARE.
td United States Software Corporation
6

14215 NW Science Park Drive, Portiand, OR97229 |

((nador 20 0us i Ot in S s o it orcieey O e DOOLCT indosroion) 0

CIRCLE #246 ON READER SERVICE CARD

90 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

l30870451 PROGRAMMER $125.

Logical Systems now nnn%s you support for the Signetics
SCH7C451. The UPA451N programs this expanded V0
microcontrodier on Droglammors {hat support the B7C51 or
B751H. Tause youl gen rPOSE programmer combine the
UPA451N and the U “CSI Logical Systems , helping you
get the most out of your programmeng equipment with our grow-
ing lina of adapters. OEM inquiries weicome.

ADAPTER PROGRAMS PRICE
UPABTS1 C2751, B751H. AMDET53H, B744 $9500
UPABTCS1 Ta751, BISIH, MB"SEH 6748 12500
BTC51. B7C51E 5
UPASI701V IMID&WIW §5.00
UPASITOIX chmomm X0 ‘Slm.hrmliu,
Low insorion loce 95.00
o, St 5 Tewlool ZIF socket 14300
UPATI7?OTY Hiachi HD63701YD .51 [sﬁ-r*-.:}.\
-L Low insarton iorce socket 2500
e -Z_Textool ZiF socket 14900
UPASITOSV ’I‘x‘-" HD‘JE?Z‘.S&; X 6500

CALL (315) 478-0722 or FAX (315} 475-8460

LOGICAL SYSTEMS CORPORATION
F.0. Bax 6184. Syracuse NY 33217-5184 USA . TLX 6715617 LOGS

CIRCLE #247 ON READER SERVICE CARD

ROM TOOLS

Develop ROM code from
Microsoft-C and MASM with

GeneLink™

H Independently locate segments,
classes, and groups.

B Complete debuggingrecords
foremulators and
GeneScope/Target™ ROM
debugger.

B Automatic initialization of
registers and initialized
variables.

< Genes;s
Microsystems
Genesis Microsystems Corporation
13300 Sunset Dr., Los Altos, CA 94022
(415) 964-3001

CIRCLE #248 ON READER SERVICE CARD

EPROM PROGRAMMER

* Programs
2764 in 8 sec
* Reads, pro-

Frams, copies
over 475 de-

= Optional m.cmm::lw&-f—f Ewads support 874x and §7C51 serwes
- J**&pf\.\\rddqu‘ul now pm.,,..u:rsm er twice as fast

- U-er arranty rp.l ts and Libor) = 6 bw
= Toil-irce technial support = Same \E:Lp'm:i!

* Thowsands of satisfied crstomers attest 1o the EP-1's geat value
* Low price of $349 includes [BM computibie communications pro-
gram, user’s manual and two kree firmnsare update coupons

CALL TODAY FOR MORE INFO 1-800-225-2102

7 g M e L |
BPMICROSY STEMS

10681 Haddimgton #150. Fiomson, TX 7743
131461508 FAX T3 8617413

CIRCLE #£249 ON READER SERVICE CARD

' DEVICE PROGRAMMER
$550 $750

- |

1 Megabit of DRAM, User upgradable to 32 Megabit
4x20 LCD Display, 3, 6 Zil socket, R3232,
PARALLEL in and out 20 Key tactile keypad (not
membrane). 32K internal EEPROM (easy firmware
upgrades) QUICK PULSE ALGORITHM (27256 in 5
| sec. 1 Megabit in 17 sec.) Completely stand alone,
10 day money back guarantee 2 year warranty, made
in U.S.A. Technical support by phone, Compiete
manual and schematic.

NEEDHAM’S ELECTRONICS

4535 Orange Grove Ave., Sacramento, CA 95841
Call for more information

Phone (916) 924-8037 FAX (916) 972-9960

VISAIMC

CIRCLE #250 ON READER SERVICE CARD

Still Blasting
ROMs"

without leaving your

Ask us about faster (than 150ns)
ROMulators and custom cables for
most non-27xxx ROM sizes.

FOR MORE INFORMATION, PLEASE CALL OR WRITE

hi-n.!t
n’{!m
===
5"'1"57'11.3
TR et Mt v
T g e T o

CIRCLE #251 ON READER SERVICE CARD

CROSS ASSEMBLERS

Macros

PC Compatible
Relocatable
Conditionals
Fast

Reliable from $150

also: Disassemblers
EPROM Programmer Board

MICROCOMPUTER TOOLS CO.
Phone (880) 443-0779

In CA (415) 0825-4200
912 Hastings Dr., Concord, CA 94518

CIRCLE £252 ON READER SERVICE CARD

THE UNIVERSAL PROGRAMMER
FOR YOUR PERSONAL COMPUTER

Assembler' Unassembler

A complese softane dven EEETROM. PLD Mrogracrmer and

development scud = 3 smghe T capassaon hamsd!

= Hande ol popalse NMC MOS, and Bepodar
sechrokge m X, 4. and 28 s pockages. {31+ pm
pxcagrs sexbible) 7

B Pio prgmamable £ funre Sevice eqpu. Seple, bwcrst
dek ke

W feefudes Asemsbler, Usasembler’. pn evescner, <reen |
edser, logac transdance. enc |

(3l for FREE evakation dsk

.adamsmacdana!d
ENTERPRISES INC
1y

iC[RCLE #253 ON READER SERVICE CARD,

More Good Code - Fast!

=« Oplional Performance Analysis quicidy isolates software
botilenecics

» Call for our free "Guides to Applicalions Development®
® Priced from $595 lo £2995

CIRCLE #254 ON READER SERVICE CARD

AN EMBEDDED
SUPERMARKET!

Make sure your product is on the
shelves when 25,000 software engi-
neers, project leaders, and embedded
developers do their shopping! The
Embedded Marketplace is the most
targeted and cost-effective way to
reach vour best prospects. Call today
for more information!

East
(212) 683-9294
Jo Ben-Atar
Nancy Schnarr

West
(415) 995-2475

Rob Murphy

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 91

M
Can Help...

Elan's 4-932 can program eight 27C512s in 52 seconds!

got you down?

Is your 120 or 288 a production bottlebeck?

Tired of waiting for PROMLINK to download to your 28B? Elan's EXFILE software can download a 64K-byte files to a
3-132 programmer and program a 27C512 in 37.5 seconds!

Is Set programming on your 288 or GangPak a breeze? Elan’s 3000 and 5000 Series programmers support quick Set
programming in 8, 16, 32, and 64-bit sizes!

CALL OUR TOLL-FREE HOTLINE* FOR FREE DEMO DISK

Twelve years experience
and proven records of support, quality, and innovation make
elan the only viable alternative to Data I/O
Production and Engineering programming solutions for all EPROM, E2PROM, Microcontrolier, and Logic applications

U.S.A. - Elan Digital Systems U.K. - Elan Digital Systems, Lt
2162 North Main Street 16-20 Kelvin Way, Crawley
Walnut Creek, CA 94596 West Sussex, RH10 2TS
*800-541-ELAN (0293) 510448

Data I/0, PROMLINK, and GangPak are trademarks of Data I/O Corporation

CIRCLE #255 ON READER SERVICE CARD

— o

8031 Forth

Complete Development Environment

=« Bryte's development environment uses BRYTE-
FORTH on the actual production hardware
during product development. No emulators, no
changes, no surprises.

= Optional PC-based cross-development tools use
DOS files as microcontroller mass storage. These
files can be used to generate compact EPROM
images, detailed listings, and cross-references.

BRYTE-FORTH 8031 EPROM $100.00
(includes 130 page User's Manual)

Utility disk(s) $65.00*

Cross-compiler /Cross-assembler $235.00*

8031 unlimited quan. license $1000.00*

* Includes complete source code

Call Today

207-547-3218

P.O. Box 46 = Augusta, ME 04330-0046

CIRCLE #256 ON READER SERVICE CARD

92 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

Audio
Proceedings

SYMPOSIUM

The battle of the glants — microprocessor architects
from Intel, Motorola, AMD, Sun, MIPS, and National
presenting the cases for thelr processors — took
place on November 3, 1988 in San Joss, CA.
Speakers Included:

o Mitch Alsup —Chief architect of Motorola’s 88000

» John Crawford — Chist architect of intel's 80388

e Dave Ditzel — Mgr. of Advanced CPU Architectures at Sun

« Mike Johnson — Chief architect of AMD's 29000

« Steven McGeady — Member of intel's 80960 design team

e David Mothersole — Manager of Motorola’s 88000 group

e Chris Rowen — Director of interactive Systems at MIPS

e Kim Rubln — VP Enginesring at VME Specialists

» David Schanin — Technical Director for National's 32000

 Nick Tredennlck — Former Nexgen Microsys, design mgr.

If you missed this outstanding event, you can still hear
what happened by ordering the 6-hour “audio pro-
ceedings,” Including coples of the visuals, for only $93
(plus tax In Callf.). Send check or credit card Info to:

MICROPROCESSOROREPORT

THE NEWSLETTER OF MICROPROCESSOR-BASED DESIGN

550 California Avenue, Suits 320, Palo Alto, CA 94308
For fastest service, call (415) 494-2677

CIRCLE #270 ON READER SERVICE CARD

®STATEOFTHE ART

by P.J. Plauger

Rating Reference Manuals

f there’s a university course on em-

bedded systems programming, I've

not heard of it. Sure, there are var-
ious offerings on operating systems de-
sign and courses dealing with the special
issues of real-time programming. But I
don’t know of any school that will prepare
you to go out into the world ready to deal
with all aspects of designing, building,
and programming embedded systems.

In the absence of a clear academic dis-
cipline, we have each of us learned our
trade the hard way. We take on a project
that requires us to cross that great divide
between hardware design and program-
ming. We find ourselves without an ade-
quate operating system, or at least with-
out all the components of one ready-
made. Willy-nilly, we become systems
programmers for a day. Except that day
often turns into half a year.

More often than not, our employers
pay our tuition for this on-the-job train-
ing. The coin of that tuition is not just
money that can be budgeted and counted
against a particular project. One form of
currency is the extra time it takes us to get
up to speed on a project that stretches our
skills. A more insidious form is the loss of
business due to late shipments, fixing
bugs on the customer’s premises, or rede-
signing to catch up with the features of
competitors’ products.

As we grow into senior engineering,
management, or entrepreneurial posi-
tions, more and more we begrudge paying
that tuition. We ourselves must scurry to
stay even with the technological jugger-
naut. We must also train subordinates in
the skills we had to learn the hard way. In
either case, we find ourselves yearning for
neatly encapsulated training or, at the
very least, knowledge.

There are always folks out there sniff-
ing the wind for any form of yearning. If
‘hese folks can convince us to part with
some of our hard-earned cash in the
hopes of satisfying our yearning, you can
bet they’ll try. They’ll write textbooks
and trade books. They’ll offer seminars in
hotel meeting rooms and in your very own

In the ahsence of
academic discipline
we have learned our
trade the hard way,
taking on projects
that require us to
cross that great
divide between
hardware design
and programming.

conference rooms. They’ll provide you
with reference cards, help menus, video-
tapes, and expert consulting.

Some will be skilled technicians and
mediocre educators; some will be the re-
verse. Too many will have neither skill,
and a scant few will have both. Some will
be saints preaching their version of the
one true gospel. Some will be charlatans.
Most will be hard-working folk like you
and me hoping to make a buck by offer-
ing a cost-effective service.

THE GOOD AND

THE BAD

The good thing about training in embed-
ded systems programming is that more
and more people are trying to satisfy the
yearning for it. Hardly a day passes that [
don’t see yet another book or seminar
with a tantalizing title. Embedded pro-
gramming, real-time systems, small op-
erating systems, RISC, CISC, TCP/IP,
Ada, POSIX, free-standing C—all are
buzzwords that instantly turn my head.
As a result, I currently own a stack of

some 30 books, each of which offers to tell
me what | need to know about this trade
that has fascinated me for years.

The bad thing about training in em-
bedded systems programming is that I
currently own a stack of some 30 books,
each of which offers to tell me concisely
what I need to know about this trade that
has fascinated me for years.

[have no more free time than any of
you. This hurly-burly we call the com-
puter industry catches us up in its mael-
strom, shakes the spare seconds out of our
pockets, and leaves us stranded on an islet
surrounded by priorities. How the hell
am [to know which books are worth read-
ing? If I listed all the books without re-
mark, how would you know which are
worth reading to meet your needs?

The purpose of this column is to give
vou a break. I'm willing to chew through
my ever-growing stack of books and read
them (or at least skim them) for you. It’s
something I do all the time anyway as
part of keeping up with my profession.
The added work is to provide an occasion-
al rambling narrative, such as this one, to
puta few books into perspective and sum-
marize what they may have to offer you.

I use the term books, by the way, in the
most general sense. | also consider com-
puter reference manuals, language stan-
dards, and the documentation shipped
with commercial products to be fair game
for review. I even hope to review the odd
seminar, although that’s a bit chancier.
In short, 1 consider grist for the mill any
source of knowledge about embedded
programming that you might have to di-
gest or evaluate.

If you've read any of my Program-
ming on Purpose columns in Computer
Language, you already know that I tend
to be eclectic, opinionated, and occasion-
ally wrong. I have no problem admitting
to any of those vices/virtues, so long as I
succeed in providing a useful service to
readers. If you don’t know about me,
however, here’s a thumbnail sketch of my
credentials for this particular endeavor.

I learned how to program embedded

PREMIERE 1988 EMBEDDED SYSTEMS PROGRAMMING 93

systems the hard way starting in the early
sixties. My academic career as a nuclear
physicist centered largely around com-
puterized data acquisition and control.
I've written operating systems both gen-
eral-purpose and dedicated to specific
tasks. I've programmed peripheral con-
trollers and data switches. What 1
learned was by imitation. What I invent-
ed was often a rehash of existing technol-
ogy, a fact of which I was sadly unaware
until much later.

I've also worked the other side of the
street. I've written textbooks and taught
commercial seminars, though not always
specifically aimed at embedded pro-
gramming. ['ve written magazine articles
and tutorials. I've lectured and consulted
in more venues than [can possibly re-
member. How much good I've done, I'm
not terribly sure.

In any event, [feel that I know what
would have been. helpful to me as I
learned this stuff. I know what I'd like to
have today, for myself and for the people
who work for me. I also feel that [know
how hard it is to teach this subject or to
sell commercial software that helps de-
velop embedded programs. It ain’t easy to
satisfy the yearning for knowledge, but it
is possible.

READING TO WRITE
With that as a preamble, I’d like to begin
at the same place many of you began your
careers as programmers of embedded
systems. Often the only literature you can
consult before you set out is the program-
mer’s reference manual for the CPU
you'll be using in the delivered product.
Here’s where you begin to find out how
much trouble you've gotten yourself into.

A microprocessor has four distinct as-
pects that the vendor must describe well
enough that you can design products
around it:

1. To use a microprocessor as an ana-
log device, you need to know size and pin-
out, power drain and heat dissipation,
clock speeds and signal tolerances. If it
can’t stand the heat, you can’t use itin the
kitchen (or under the hood). Maybe you
can clock it at 20 MHz, but only if you
can tolerate five errors per day of oper-
ation. Otherwise, you'd better know and
honor its limitations.

2. To use a microprocessor as a digital
device, you need to know data formats,
clock phases, and signaling protocols.

Even if you can pretend that all your logic
chips are pure digital devices (silly you),
you can’t interface memory or other de-
vices to the microprocessor unless you
know how the bits fly.

3. To program the operating system
for a microprocessor, you need to know
how it handles power-on, traps, inter-
rupts, and memory management. You
also need to know how to control timers
and various peripheral devices. All that
stuff that DOS or UNIX does for you,
you have to handle for yourself.

4. To write applications for a micro-
processor, you need to know data for-
mats, the set of valid instructions, and the
valid addressing modes for each instruc-
tion. You also need to know register lay-
outs, sensible function-calling sequences,
and how to inhibit or handle exceptions.

If you write only applications hosted
under a popular operating system, you
can confine your attention to aspect 4. A
machine-specific operating system such
as PC-DOS probably models its user ex-
ception-handling machinery after the
hardware trap and interrupt require-
ments, so you may touch on aspect 3 as
well. Most of that and the preceding as-
pects, though, is largely hidden from you.
That’s the purpose of off-the-shelf oper-
ating systems and computers.

If, on the other hand, you find yourself
writing free-standing code, then you're in
the business of writing operating systems.
You may write only a tiny operating sys-
tem compared to a UNIX or even a PC-
DOS, but it must touch all the bases
nonetheless. For such an enterprise, you
must know all about aspects 3 and 4. And
if you must control a few peripheral de-
vices in the bargain, then likely enough
vou must touch on aspect 2 as well.

People who build processor boards
and complete boxes must be thoroughly
at home with aspect 2. They can be large-
ly ignorant of aspect 4 and only dimly
aware of aspect 3. How much such people
must know about aspect | depends upon
how hard they’re pushing the state of the
art and how much design control they
have over all the system electronics.

People who live in a world where as-
pect 1 is most important are often igno-
rant of any issues beyond aspect 2. Many
modern processor architectures are avail-
able in a number of different form fac-
tors. The circuit designer can often select
a cheap plastic part for economy, a

94 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

CMOS version for low power drain, or a
hardened version for military applica-
tions. Insooth, the jobs of the applications
programmer and systems programmer
are often unchanged across different
form factors. The separation of concerns
between hardware and software design-
ers often benefits productivity.

The potential audience for informa-
tion about each of these aspects grows
dramatically as you proceed from aspect
1 to aspect 4. There are more people who
assemble boards into systems than there
are people who design boards and boxes.
There are more people who program
boards and boxes than there are people
who build them. There are far more peo-
ple who program under operating sys-
tems than there are people who write op-
erating systems.

All these considerations color the way
1 view a reference manual for a micro-
processor. I judge the usability of a refer-
ence manual by:

® How well it presents the four
aspects.

® How clearly it distinguishes among
the four aspects in addressing the differ-
ing needs of various constituencies.

m How smoothly the applications pro-
grammer is steered to matters from as-
pect 4.

® How smoothly the systems pro-
grammer is directed to the additional
matters from aspect 3.

Two of the most important processor
families for embedded applications are
the Motorola 680x0 and the Intel 80x86.
Let’s see how they stack up by these
criteria.

Motorola, Inc., M68000 16/32-Bit
Microprocessor Programmer's Refer-
ence Manual, Prentice-Hall, Englewood
Cliffs, N.J. (1979 and various later
editions).

The first Motorola 68000 manual I
read contained bus timing diagrams and,
1 believe, pin-outs and chip characteris-
tics as well. The various aspects of the
chip were more or less separated in differ-
ent chapters, but the presentation was all
stirred together. It’s an interesting sign of
our times that Prentice-Hall saw fit to
publish a microcomputer reference man-
ual. (I've even seen it in hardcover.) At
least the part of the manual that’s of in-
terest to programmers. Along the way, all
but the architectural considerations (as-

pects 3 and 4) disappeared.

TG el g

** The Best 8051 Emulator™”

support for
PL/M-51
and C-51

— m— - (0

5 ft. cable

8051

PC based emulators for the 8051 family
(8051, 8751, 8052, 8752, 8031, 8032, 8344, BOCAS2, BOC152, 80535, BOCA51)
s PC plug in boards » Powerful Macros with IF-ELSE, REPEAT-
* Command driven User Interface WHILE structures
with static windows * Sourcs Level debug for PL/M-51 and C-51
* 16 MHz real time emulation = Symbolic dabugging with in-iine assembler
» 128K emuiation memory and disassambler
* 48 bit wide, 16K deep trace buffer + No exiemai boxes
with loop counter = Execution time counter
* Program erformance analyzer = Trace can be viewed during emuiation!

PRICES: 32K Emulator for 8031 $1790, 4K Trace $1495
CALL OR WRITE FOR FREE DEMO DISK!
Ask about our demo VIDEQ!

noHau

CORPORATION
51 E. Campbell Ave.. Campbell, CA 95008 (408) 866-1820

WESCON/88
booth #3461

CIRCLE #258 ON READER SERVICE CARD

COMPLETE DEVELOPMENT SYSTEM
FOR MACHINE CONTROL
APPLICATIONS @

>

TINY188 is a low cost “PC somewhat com-
patible” engine for OEM controller applica-
tions. A selection of high level languages is
available in ROM.

DDS188 An optional development board with
EPROM programmer, floppy disk controller
and added memory, removes to lower target
system cost.

Prices start at $269 each/$99 at 1,000.

Vesta Technology, Inc.
(303) 422-8088

CIRCLE #259 ON READER SERVICE CARD

Supports Most Intel, Motorola, Zilog &

Elegant, concise, fast & standardized

FLOATING POINT

libraries for embedded applications

Based on the IEEE 754 standard, FPAC (32 bit)and DPAC (64 bit) libraries
are malure, well documenied, and fully tesied. U § Soflware, the
industry leader in high speed numerical analysis, provides floating point
libraries across many diverse applications.

» Basic Operations

® Square Root

* Trigonometric

* ASCi Conversion
® Infeger Conversion
® |ogarithmic

U S Soflwares’ libraries are economical and easy fo integrate,
dramatically reducing project development costs by decreasing the
design. development, and test cycle. FPAC and DPAC are delivered in
source assembly form and inciude support from our engineering siaff.

For additional infomnation. please cail:

a U S SOFTWARE:-

United States Software Conporation
14215 NW Science Park Diive
Portiond, Oregon 97229
800-356-7097

In The UK. in'W. Germany
ALC. Creative Data Creative Daten GmmbH
03 3563 241 (0256) 8B40 546 089 854 30 80

KADAK's
engineers bring years
of practical real-time experience
to over 600 installations world-wide.

This real time
MULTITASKING KERNEL
simplifies real life
product development

®m No royalties B " Dynamic memory

m Full source code inciuded allocation

® * C interface B * Event Manager

m Preemptive scheduler m * Semaphore Manager
® Intertask messages m " Resource Manager
®m Terminal Handler ® " Buffer Manager

AMX 68000 operates on any 68000/10/20 sysfem

n v ‘k
Manualony s7sus SEKADAK Products Ltd.

- ions — ice li 206 - 1847 W. Broadway
s Dol Vancouver, B.C. Canada V6J 1Y5
Telex: 04-55670

Fax: (604) 734-8114
Telephone: (604) 734-2796

{Shipping/handkng extra)

Also avarlabie for 8080, 780,
B086/186/286.

CIRCLE #260 ON READER SERVICE CARD

I think this manual really does try to
meet the criteria outlined earlier. Where
it fails is where it persists in copying tradi-
tional presentations. For example, Figure
1.1 shows the User Programmer’s Model,
which is really the registers visible to a
program running in user mode. That’s all
well and good, but the next three figures
bullright intoinformation that only a sys-
tems programmer could love. [also can’t
assert that any of the figures are ade-
quately supported by descriptions in the
text.

The first thing [, as a longtime compil-
er writer, want to know about a computer
architecture is what the address modes
are. How do you build addresses and use
them to access memory? The second
thing I want to know is how general these
modes are. What combinations of ad-
dress modes are valid with which instruc-
tions? These considerations are more im-
portant fo me than the number of bitsina
byte, or the number of bytes in various
integers, or how the machine encodes in-
tegers and floating-point values.

In this regard, the folks at Motorola
deserve an E for effort. The 68000 man-
ual presents address modes right off the
mark. Machine instructions follow close-
ly on their heels. You get all this informa-
tion summarized a couple different ways,
and you get lots of block diagrams by way
of illustration. That’s the good news.

The bad news is that the 68000 is a
very irregular machine masquerading as
a souped-up PDP-11. Most instructions
set aside all the bits you need to access one
operand with an arbitrary address mode.
(A register usually serves as the second
operand. Several moves let you write two
arbitrary address modes, one for source
and one for destination.) The problem is,
only some of these modes work for each
instruction. Just because the bit pattern
exists for using, say, the address register
predecrement mode, the hardware won’t
necessarily do something sensible.

Table B-1 in the manual is an invalu-
able summary of the various subsets of
addressing modes and the names used for
the subsets. For each instruction descrip-
tion, pay close attention to the last sen-
tence or two. There, and only there, do
you learn just how irregular the 68000
really is. I still carry second-degree burns
from my first few years of writing assem-
bly-level support code for C on the 68000.
(It seems that Motorola’s assemblers

have been slow to check for all invalid
combinations of instructions and address
modes.) Later members of the 68000
family, from 68020 on, have filled in most
of the holes in the table of valid modes but
have done so by adding more complicated
codes, not by giving more sensible defini-
tion to the existing codes.

So much for helping the applications
programmer. We can only be grateful
that excellent C and Pascal compilers are
available for this family. As a result, few-
er and fewer people need concern them-
selves with these warts. In fairness to the
anonymous authors of the 68000 refer-
ence manual, I should emphasize that
most of the problems stem from the chip
itself. Still, the presentation can and
should draw attention to the dangers.

As for systems programmers, they’re
pretty much on their own here. There are
a few pious paragraphs on “Structured
Modular Programming™ and “Improved
Software Testibility [sic/.” There’s a
brief essay explaining how Motorola
fixed the virtual-memory support in the
68010and later processors. This is mostly
back-patting; vou’ll find little guidance in
laying out the low-memory image of a
control ROM.

Intel Corp., The 8086 Family User’s
Manual, Intel, Santa Clara, Calif. (1979
and various later editions).

The Intel 8086 reference manual
takes almost the exact opposite approach.
It seems to be written primarily for hard-
ware designers (aspects 1 and 2). Pro-
gramming considerations are almost an
afterthought. Intel documentation has
repeatedly given me the impression that
programming is what those other guys do
after the real design work is complete.

On the other hand, the documentation
is easy to read and is, I must confess, as
complete as I've ever needed. It begins
with pin-outs and system block diagrams.
It devotes almost as much space to de-
scribing support chips as it does the CPU
proper, but buries in the middle of this
thick document a thorough description of
the address modes, instruction set, and
interrupt vectors.

You also find real-live essays that ac-
tually try to describe what the various de-
sign features mean. Sometimes you can
even find a bit of justification for why the
architecture ended up the way it did. And
the material stops well short of being
preachy. (I intentionally didn’t review

96 EMBEDDED SYSTEMS PROGRAMMING PREMIERE 1988

the Intel 80286 and 80386 manuals,
which can be as pious as early DEC man-
uals. They leave you with the general im-
pression that computer science was in-
vented by Intel in Aloha, Oregon.)

Of course, the Intel 8086 architecture
really is irregular. With its Intel 8080
heritage, it could hardly be otherwise.
(See my article “Son of PC Meets the C
Monster” in Computer Language, Feb.
1987.) That makes it hard to present
some topics clearly. Under the circum-
stances, you could hardly ask for more (at
least from a computer manufacturer).

WRITE AND REWRITE
What both manuals sorely need is a com-
plete rewrite by someone skilled in the
art. One of the nicest results of the PC
revolution is that our standards for ade-
quate documentation are steadily rising.
It seems that the future marketplace for
both manuals is promising enough to
warrant investments by both Motorola,
Inc. and Intel Corp. in truly readable
prose.

A couple of years ago, it looked like the
battle lines were drawn for the last great
shootout. There were only a few widely
used architectures; Motorola and Intel
owned two of them. The only issue was
which would win what corners of the
computer marketplace. Now there’s a
whole new set of players. Motorola and
Intel own two of the new entrants, but
they don’t necessarily have the inside
track on future adoptions.

I'd dare tosuggest to vendors that doc-
umentation is important and always has
been, though in the past we took what we
could get. (Old definition: If they give you
the documentation, it’s a mainframe. If
they sell it to you, it'’s a minicomputer. If
it’s sold out, it’s a microcomputer.) The
battle for the hearts and minds of embed-
ded systems programmers can be won by
supplying readable programmer’s refer-
ence manuals.

PJ. Plauger has coauthored several
popular textbooks with Brian W. Kerni-
ghan, including The Elements of Pro-
gramming Style (New York, N.Y:
McGraw Hill, 1978) and Software Tools
in Pascal (Reading, Mass.: Addison-
Wesley, 1981). He's the secretary of
X3J11,the ANSI C standard committee,
and president of Whitesmiths, Ltd.

CrossCode'C -

t's hard to know ahead of time what

features you’ll be needing in a
68000 C compiler. But if you're using
Crosscode C you won’t need to think
ahead, because CrossCode C is already
equipped with these twelve important
features for your ROMable code devel-
opment:

I. A 100% ROMable Compiler:
CrossCode C splits its output into five
memory sections for easy placement into
ROM or RAM at link time.

2. Integrated C and Assembler: You
can write your code in any combination of
C and assembly language.

3. Readable Assembly Language
Output: The compiler generates assem-
bly language code with your C language
source code embedded as commenis, so
you can see each statement’s compiled
output.

4. Optimized Code: CrossCode C uses
minimum required precision when eval-
uating expressions. It also "folds" con-
stants at compilation time, converts
multiplications to shifts when possible,
and eliminates superfluous branches.

5. Custom Optimization: You can op-
timize compiler output for your applica-
tion because you control the sizes of C
types, including pointers, floats, and all
integral types.

for the

Embedded systems designers have already used CrossCode C in over 291 different applications.

How to choose a 68000 C compiler
for your ROMable code development

These twelve important CrossCode C features could
make the difference between success and failure

6. Register Optimization: Ten regis-
ters are reserved for your register vari-
ables, and there’s an option to automati-
cally declare all stack variables as
register, so vou can instantly optimize
programs that were written without
registers in mind.

7. C Library Source: An extensive C
library containing over 47 C functions is
provided in source form.

8. WNo Limitations: No matter how large
your program is, CrossCode C will com-
pile it. There are no limits on the number
of symbols in your program, the size of
your input file, or the size of a C function.

9. 68020 Support: If you're using the
68020, CrossCode C will use its extra in-
structions and addressing modes.

10. Floating Point Support: If you're
using the 68881, the compiler performs
floating point operations through the
coprocessor, and floating point register
variables are stored in 68881 registers.

11. Position Independence: Both posi-
tion independent code and data can be
generated if needed.

12, ANSI Standards: CrossCode C
tracks the ANSI C standard, so your code

will always be standard, too.

There’s More

CrossCode C comes with an assembler,
a linker, and a tool to help you prepare
your object code for transmission to
PROM programmers and emulators. And
there’s another special tool that gives you
symbolic debugging support by helping
you to prepare symbol tables for virtually
all types of emulators.

CrossCode C is available under MS-
DOS for just $1593, and it runs on all [IBM
PCs and compatibles (640K memory and
hard disk are required). Also available
under UNIX & XENIX.

CALL TODAY for more information:

1-800-448-7733

(ask for extension 3001)

Inside Illinois or outside the United
States, please dial

PHONE: 1-312-971-8170
FAX: 1-312-971-8513

SOFTWARE DEVELOPMENT SYSTEMS, INC.
DEPARTMENT 31

3110 WOODCREEK DRIVE

DOWNERS GROVE, ILLINOIS 60515 USA
CrossCode™ is a irademark of SOFTWARE DEVELOPMENT
SYSTEMS, INC. MS-DOS® is a registered Irademark of

Microsoft. UNIX® is a registered trademark of AT&T. XENIX®
is a registered trademark of Microsolt.

~The 8086/80x86 Famlly

CYE IR

The 6502 Family

Aztec C ROM Cross Development Systems
Produce Fast, Tight C Code with Less Effort .

Aztec C ROM Cross Development systems are the
Systems give you the best results — choice of more
clean, tight and fast running code. professional ROM
Aztec C systems are available for a variety developers.
of targets and for both MS-DOS or Apple So when y()u’ re l()okj_ng for
NIaCintOSh hOStS! Aﬂd, Aztec C SYStemS the best results’ insist on
Come_comp]ete with a]l.the tools to edit, Aztec C ROM Cross Develop{'ﬁem
compile, assemble, optimize and, now, Systems. Call today and find out more
source debug your C code in less time and about our complete line of Cross
with less effort. Development Systems.
gnuality, gl;ﬁlt co?e that’s fast and efficient.

abundance of tools to produce better = : : iy
results in less time. That’g why Aztec C o s Tt D s o et

D0 22r0AE € -MANIN

Fax: 201/542-8386 SOFTWARE SYSTEMS

MS-DOSisa s 2 esdered kraclomark of Mcrosol One Industrial Way Eatontown, New Jersey 07724
Appie and are regrstered trademarks of Computer Corporation.

CIRCLE #261 ON READER SERVICE CARD

