<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright/Allied</td>
<td>SEAWIND II</td>
</tr>
<tr>
<td>Hull #</td>
<td>#57</td>
</tr>
<tr>
<td>Hull Serial #</td>
<td>ABCSW0570177-MKII</td>
</tr>
<tr>
<td>Length Overall</td>
<td>31'7"</td>
</tr>
<tr>
<td>Length Waterline</td>
<td>25'6"</td>
</tr>
<tr>
<td>Beam</td>
<td>10'5"</td>
</tr>
<tr>
<td>Draft</td>
<td>4'6"</td>
</tr>
<tr>
<td>Actual Lead Ballast</td>
<td>5396</td>
</tr>
<tr>
<td>Displacement</td>
<td>14,900</td>
</tr>
<tr>
<td>Engine Model #</td>
<td>W-30</td>
</tr>
<tr>
<td>Engine Serial #</td>
<td>786A/D674B701</td>
</tr>
<tr>
<td>Transmission Type</td>
<td>Hurth Manual</td>
</tr>
<tr>
<td>Shaft Size & Type</td>
<td>1 3/4 Bronze</td>
</tr>
<tr>
<td>Prop Size & Type</td>
<td>16x10 R.H. 3B Dyna-Jet</td>
</tr>
<tr>
<td>Maximum R.P.M.</td>
<td>2500 Maximum Continuous Rating</td>
</tr>
<tr>
<td>Reduction</td>
<td>2:1</td>
</tr>
<tr>
<td>Fuel Tank Location</td>
<td>Under Cockpit</td>
</tr>
<tr>
<td>Fuel Shut Off Location</td>
<td>Underneath Steerer in Aft Locker</td>
</tr>
<tr>
<td>Fuel Capacity</td>
<td>40 Gallons</td>
</tr>
<tr>
<td>Water Tank Location</td>
<td>Underneath Cabin Sole</td>
</tr>
<tr>
<td>Water Capacity</td>
<td>60 Gallons</td>
</tr>
<tr>
<td>Alcohol Tank Location</td>
<td>Under Aft End of Port Settee</td>
</tr>
<tr>
<td>Alcohol Capacity</td>
<td>2 Gallons</td>
</tr>
<tr>
<td>110V Converter Location</td>
<td>Port Saillocker</td>
</tr>
<tr>
<td>Sail Area - Main</td>
<td>203 sq. ft.</td>
</tr>
<tr>
<td>Mizzen</td>
<td>84 sq. ft.</td>
</tr>
<tr>
<td>Jib (100%)</td>
<td>205 sq.ft. (150%) - 378 sq.ft.</td>
</tr>
<tr>
<td>Mast Head Height Above Waterline</td>
<td>43 ft.</td>
</tr>
</tbody>
</table>
Note:
1. Position aft lifting strap between backstay and after shroud of mizzen
2. Position forward lifting strap with forward edge of strap at lower after shroud of main mast
3. Tie straps together with a line (horiz. line) holds forward strap from moving forward
4. Not necessary to remove any standing rigging, just remove mizzen boom toing lift and let mizzen boom rest on stern pulpit.

CUSTOM CHANGES IN LAYOUT AVAILABLE

LIFT-OUT
This manual is designed to augment the data furnished by equipment suppliers to provide you with general information that will be helpful in the maintenance of your yacht.

Those who require knowledge about sailing, seamanship, racing and so forth are advised to seek literature published to meet the needs and interests of the full range of the yachting public.

This manual should be particularly helpful during the shake down period. Upon delivery, launching and periodically thereafter, inspection and minor adjustments i.e. trimming the rigging, engine fluid level checks, battery condition, hose connection tightening; stuffing box maintenance - etc. may be required. This is also the ideal time to get to know your boat and to record data for your future ready reference. We suggest that you make notes of data that may be helpful to refresh your memory later on. Good preventive maintenance and verification provide a feeling of security when weather and unusual conditions challenge you and your yacht.

Your dealer or representative who stepped the mast(s) has no doubt verified that the rigging is set in workmanlike trim. Check it over and ask him to "fill you in" on any details that raise questions in your mind.

FILE ALL MANUALS, SERVICE BULLETINS, INSTRUCTION SHEETS FOR YOUR FUTURE CONVENIENT USE
LIMITED WARRANTY

WHAT IS COVERED
The Manufacturer warrants the integrity and seaworthyness of the hull and deck under normal use and circumstances and normal care and maintenance for a period of three years from the date of delivery to the original customer and will repair or replace any defects traceable to faulty workmanship or materials.

WHAT IS NOT COVERED
The Manufacturer does not warrant purchased accessories which are bought from outside suppliers and installed on the boat. Many such items are warranted by their original manufacturer and where possible will be passed on to the customer.

The external finishes (gelcoat, paint, teak oil, etc.) applied during the construction of the boat are believed to be the finest and most durable available. However, they are not, and cannot be, warranted by the Manufacturer due to the widely varying effects on them experienced in different climates.

This Warranty shall not apply to any boat which shall have been repaired or altered by persons unauthorized by Wright Yacht and shall cease forever to be effective at such time as a boat is hired out on a bare-boat charter.

This Warranty is expressly in lieu of any other warranty express or implied, and of all other obligations or liability on the part of the Manufacturer.

(a) WRIGHT YACHT DOES NOT, UNDER ANY CIRCUMSTANCES, ASSUME RESPONSIBILITY FOR THE LOSS OF TIME, INCONVENIENCE OR OTHER CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT LIMITED TO, EXPENSES FOR TRANSPORTATION AND TRAVEL, TELEPHONE, LODGING, LOSS OR DAMAGE TO PERSONAL PROPERTY OR LOSS OF REVENUE.
(b) Leaks at stanchions and chain plates resulting from day to day operation of the boat are normal and considered part of consumer maintenance.
(c) Wright Yacht reserves the right to make changes in the design and material of its boats and component parts without incurring any obligations to incorporate such changes in units already completed or in the hands of Dealers or consumers.

WRIGHT YACHT COMPANY, INC.

(Date) __________________________ (Signature of Owner)

NOTE: Please sign and return one copy to register your Warranty with the company.

Please sign when applicable. I hereby acknowledge that a copy of the Wright Yacht Company, Inc. Warranty was made available to me prior to my signing a sales contract and that I read and understood its content.
Your fuel tank has a labeled deck fill and is vented overboard. The fuel gauge (float type with electronic sensor), included as part of the instrument panel will indicate your fuel condition. Satisfy yourself by verifying the gallonage. A helpful record can be developed when you are at a filling pump by recording the gallons delivered in the several increments.

![Fuel Gauge Diagram]

As full condition is reached - a careful operator will be warned by a noticeable sound change. **DO NOT OVERFILL**

USE GOOD QUALITY DIESEL FUEL - It is good practice to develop your own experience record of fuel usage so that you can appropriately plan refueling requirements.

See page 2 for safety shut off location - keep it clear for quick access.

The fuel tank is constructed of 14 gauge Corten steel to give excellent service and long life. The 2 pipe system is initially by copper tubing connecting at the engine end to 15" runs of fire resistant flexible fuel line both to and from the fuel lift pump.
Fuel filter - Westerbeke glass bowl type (or optional Fram Filter Separator), is installed in the fuel feed line to eliminate moisture and sediment before it reaches the engine.

At least monthly (or when observation indicates), open the drain cock in the base and drain into a waste recepticle.

See Fram circular for description of how it works.

ENGINE ROOM VENTILATION

Cowl bilge ventilators aft should be installed. Pry out and snap cover plates. Snap in the P.V.C. ventilators with one unit aiming forward and one aft to create a natural venting action.

Flexible venting hose running deep into the bilge assures complete ventilation.
The fiberglass rudder was constructed in two half shells. A 1-1/2" (curved shaft in Seawind), (straight shaft with 4 tines in Prince and Mistress), was located in the cavity between the two halves. Upon assembly the rudder core was then filled with resin to make a solid unit. Note, with time the parting line crack may appear but this does not indicate internal failure. Timely minor gel coat repair is recommended.

The rudder is supported by a heavy bronze shoe thru bolted to the keel.

A cutlass bearing and sleeve extend thru the hull. Inside a heavy weight 5 ply 2-1/2" I.D. X 5" rubber hose and 1-1/2" stuffing box are clamped in place. If cutlass bearing replacement is required cut away the glass around the upper end of the sleeve to expose the stainless set screws and loosen them before attempting to pull the bearing retainer. The upper end of the shaft is machined to fit the tiller head or Quadrant. On the Seawind, Mistress and X an emergency tiller can be installed thru a safety port and directly on the rudder post if steerer problems are experienced.

In some models an extension stub shaft is utilized. It will be necessary to loosen the set screws in the stub shaft collar to drop the shaft thru the stuffing box and cutlass bearing.

A clearance of at least 2 feet is required to clear the rudder post.
SHAFT AND PROPELLER

A flexible engine to prop shaft coupling is keyed and fastened with set screws to the forward end of the (1-1/4") prop shaft. A 1-1/4" stuffing box is connected by a heavy weight 5 ply 2'1/4" I.D. X 5" rubber hose to the inner end of the shaft log housing the cutlass bearing sleeve. Stainless clamps bind this assembly in place.

The original stuffing box adjustment was "hand tight plus 1/4" turn". It should drip every 10 to 15 seconds to provide sea water cooling and a minimum friction seal. This avoids scoring and grooving of the shaft.

The cutlass bearing sleeve is a snug fit into the shaft log. If bearing replacement is required uncover and loosen 4 stainless steel set screws located 1/2" from the aft end before attempting to pull the bearing retainer.

The propeller (specs. on page 2) is keyed and locked in place with locking nuts, cotter pinned.

[Diagram of shaft and propeller assembly]
DIESEL ENGINE

Refer to the Engine Manual. Your engine has been installed as recommended in that manual and aligned with great care. The engine operating control panel in the cockpit includes the gauges supplied by your engine manufacturer and a fuel gauge.

To start the engine, the main battery switch must be on. Unless the engine is still hot from previous running (within an hour), it is necessary to push the moisture proofed pre-heat button for 30 to 40 seconds before attempting to start. Run starter for only 10 or 15 seconds. If engine does not start, repeat the preheat procedure. At temperatures below 40° the engine will start faster if the throttle is at full. BE SURE THE SHIFT IS IN NEUTRAL.

Pull up on the shut off handle to stop the engine. This cuts off fuel supply. The transmission has shifting stops (forward and reverse) and a self locking (dent) position for neutral. Before starting be sure it is in neutral. The throttle has a dent at idle speed. Before casting off check the control unit assembly attaching bolts and hardward for looseness that may have resulted from vibration, particularly after the first hours of operation. Both control handles are removable. (Pull out). Use care and judgement in shifting to avoid excessive strain. Some propeller shafts may have a prop lock. DISENGAGE THE LOCK BEFORE STARTING ENGINE.

Please see the Westerbeke Manual - Page 13 - OPERATION
Page 17 - TEN MUST RULES
Page 19 - MAINTENANCE
See Engine Manual (Section R). Sea water is drawn in through a scoop strainer located well below the waterline. Then through a sea water Flo-view filter installed to ensure weed and sludge elimination. The filter is located beside the engine immediately above the intake thru hull and seacock. Inspect it periodically clean when necessary. Disassemble by removing the four-thumb screws. Rubber gaskets seal the top and bottom of the glass. Be careful reseat the unit properly when reinstalling. From the filter the water is pumped through the oil cooler, heat exchanger and exhaust manifold and is then discharged overboard.

The "fresh" water system is filled with a 50-50 solution of permanent anti-freeze and pure water with a capacity of 2 + gallons. Check the fresh water expansion tank water level (maintain at one inch from top of the tank.) Notice. In an overheated condition pressure should be released gradually as the filler cap is removed. Turn counter clockwise to initial stop. When pressure dissipates push down on the safety cap and turn counter clockwise again to remove.

Check your engine temperature guage and your exhaust periodically to verify continuing adequate sea water flow.
Westerbeke Service Bulletin #7 suggests that if you experience a loss of R.P.M., loss of power and/or black smoking, it may be due to clogging of the air filter located on top of or near the mainfold. Remove the filter (two thumb screws) for a short period of time to see if the condition clears. Clean and replace the filter. Do not run for extended periods without a filter.

LUBRICATION

Crank case oil supplied is S.A.E. 10W-40 H.D. Manual gear box oil supplied - S.A.E. 20 Non detergent. (Exception - 3 to 1 Reductor is supplied with transmission oil.) Levels should be checked initially and at monthly intervals. When "checking" the gear box oil level, do not screw in the threaded end of the dip stick. Nickel colored seal ring is installed between the hex head and the stick opening. Replace it as you rethread the dip stick. Change the gear box oil after 100 hours of running and every season.

Included in the loose leaf literature is a handy listing of stocking dealers and distributors.
ELECTRICAL

The Master Control panel is conveniently located in the aft bulkhead of the main cabin. The "large handled" turn switch shows -

BOTH
(Batteries in Parallel)

Battery No. 1 Only — Battery No. 2 Only

OFF

Battery charging is dependant upon your selection by means of this switch (i.e. to the left Battery 1 only, to the right Battery 2 only, or up both batteries in parallel), when the engine is running. The (Opt.) converter charges independent of this switch.

Battery usage is similarly indexed. You may elect to save the charge in one battery for start up power while using the other for lighting, pumps, etc.

Mounted on the master control panel are the circuit breakers that connect the labeled systems of the 12V units and the (opt.) 110V converter, water heater, etc. - See Electrical System pages.
DOCK POWER

110V (opt.) dock power is connected through the weather shielded dock entrance receptacle (twist type, 3 prong). When connecting at dockside, be sure to leave slack in the entrance cable so as not to apply strain at the disconnect plugs. The entrance circuit runs directly to the main breaker for distribution through the panel breakers to the converter and to the standard electrical convenience outlets or to any optional equipment.

A "Nite Light" in one of the convenience outlets is helpful by indicating the 110 circuit is energized. Grounding is assured by this three wire feed unless the dock facility integrity is faulty. Verify dock supply. Use 110 volts and 60 cycles only.

STATIC ELECTRICAL PROTECTION

All shrouds, chain plates, etc. have been carefully grounded to "thru hull" seacocks to "ground" any static electricity that may develop.
SEAWIND II
ELECTRICAL SYSTEM

GENERAL

The following pages provide a description of the electrical circuits and equipment installed in the SEAWIND II. All electrical circuit diagrams are in schematic form for ease of servicing.

COMPONENT LOCATIONS

A. Battery - Mounted on platform, located in engine compartment, starboard side. Access through sail locker.

B. Battery Switch - located below companionway, adjacent to chart table, on removable panel.

C. Switch Panel - Also located below companionway.

D. Water Pressure Pump - Located in engine compartment, port side on shelf. Access through sail locker.

E. Hot Water Heater (Opt.) - When installed, located in engine compartment, port side, on shelf. Access through sail locker.

F. Converter (Opt.) - When installed, located in engine compartment, starboard side, on main engine bulkhead. Access through sail locker.

G. Shore Power Receptacle (Opt.) - When installed, located in aft cockpit area.

I. Engine Instrumentation & Controls - Located in teak panel box forward end of cockpit. Guages consist of ammeter, tachometer, oil pressure, water temperature and fuel guages. Also engine pre-heat (diesel), start and shut off controls. Access to these guages is gained by removing switch panel face below companionway.

J. Engine Alarm - For high water temperature and low oil pressure, located on back side of switch panel board.

CIRCUIT WIRING

Two separate wiring harnesses provide power to all circuits installed. The forward harness originates at the main terminal in the engine compartment for bilge pumps, water pressure pump, stern light, optional shore power inlet and galley outlet, converter, hot water heater and fuel guage.
The fuel gauge will energize by operating the main battery switch. The manual gauge is mounted on top of the fuel tank, access through steering locker.

Primary power is supplied to the electrical system by a single 90 amp hour battery or by two 90 ampere hour batteries (optional) through a mounted battery master switch. Wiring is Ø size battery cable to accommodate high starting currents required by the engine starter motor. Battery electrolyte levels should be checked periodically and replenished with distilled water when available. Battery terminals should also be checked and removed whenever corrosion becomes evident. Remove corrosion by washing with a solution of Baking Soda and water. Before replacing battery terminals, scrape clean with a knife and/or sandpaper. Coat each terminal with bearing grease before tightening down.

Wiring contained within the main mast is inter-connected to the wiring within the hull via mating 5 pin amphenol connectors. Wiring to the amphenol connectors is as follows:

1. Connector Pin A: Black (#14 wire) DC Return
2. Connector Pin B: White (#14 wire) Mast light
3. Connector Pin C: Yellow (#14 wire) Bow light
4. Connector Pin D: Orange (#14 wire) Spreader Light
5. Connector Pin E: Green (#14 wire) Bond

The 5 pin male amphenol connector is potted with a silicone rubber compound to minimize corrosion. Its mating 5 pin flanged female connector is sealed and fastened to the deck to prevent leakage into the hull.
ELECTRICAL SYSTEM

Basically the electrical system is broken down into several sub-systems that fall into the following categories:

1. Cabin Lighting
2. Exterior Lighting
 a. Running Lights
 b. Bow Light
 c. Mast Light (Opt.)
 d. Spreader Lights (Opt.)
3. Domestic Circuit Functions
 a. Water Pressure
 b. Shower Sump (Opt.)
 c. Refrigeration DC (Opt.)
 d. Bilge (Opt.)
 e. Electric Head (Opt.)
4. Instrumentation (Opt.)
 a. Speedo
 b. Apparent Wind Indicator
 c. Annemometer
 d. Radio
 e. Other, as specified
5. AC Circuits (Shore Power Option)
 a. Converter
 b. Hot Water
 c. Refrigeration
 d. Air Conditioning
 e. Outlets

All wiring is color coded for ease of identification if service is required. Color coding is as follows:

<table>
<thead>
<tr>
<th>Color</th>
<th>Code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>#8</td>
<td>DC Return</td>
</tr>
<tr>
<td>Green (#8)</td>
<td>Common Bond 3/8"Φ</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>Interior Lighting</td>
<td></td>
</tr>
<tr>
<td>Red (#14)</td>
<td>Running Lights 1/4"Φ</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Bow Light</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Masthead Light (Opt.)</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>Spreader Lights (Opt.)</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>Shower Pump (Opt.)</td>
<td></td>
</tr>
<tr>
<td>Grey</td>
<td>Bilge Pump (Opt.)</td>
<td></td>
</tr>
</tbody>
</table>

Terminal strips installed at the main distribution terminal allow for voltage and continuity checks to be made without necessitating panel removal, should servicing be required. Continuity checks are made from the primary input (#8 Red wire) to the switch panel.

Most lighting, with the exception of some bulkhead mounted units connected to the system via terminal strips located in close proximity to each fixture. This provides ease of maintenance and/or removal should this become necessary. Bulkhead mounted units not having terminal strips are connected directly to the boat wiring.

ENGINE WIRING

All engines installed have been prewired by the engine manufacturer.
Consult engine manufacturer's manual for additional information.

BONDING

Electrical bonding has been provided for the mast and standing rigging to several thru-hull fittings. The main mast has been bonded to Pin D of the 5 pin amphenol connector, as described in the previous section. Bonding of the headstay is through the stemhead fitting at the forepeak. Also, all chain plates and mast steps are bonded to provide a bond for the shrouds.

Thru-hull fittings are used to provide a current path to the water; these units are the only metallic elements in direct contact with water.

OPTIONAL SHORE POWER CIRCUITS

1. **Converter**

 The main purpose of the converter is to maintain the batteries at full charge when shore power is used. The primary A.C. input circuit to the converter is controlled by a circuit breaker on the main switch panel in the chart table. With shore power applied and this circuit breaker in the 'ON' position, the batteries will be brought up to, and maintained at, full charge by the automatic circuits within the converter. Should the engine be started while shore power is in use, the converter will automatically shut off, protecting the alternator.

 Operating and maintenance instructions and other specific information will be found in the equipment manufacturer's manual.

2. **Hot Water Heater (Optional)**

 Domestic hot water is provided in either of two ways. While under power, engine cooling water is circulated through a specially constructed water jacket surrounding the tank of the hot water heater. When no power is supplied, however, water is heated by an electrically heated coil built into the water heater. Operation of the heater with shore power applied is controlled by a circuit breaker on the main switch panel in the chart table.

 Consult the individual equipment manufacturer's manual for additional information pertaining to this unit.

 NOTE: DO NOT operate A.C. unless water is in tank.

3. **A.C. Outlets (Optional)**

 All A.C. outlets become operable when shore power is applied and a switch marked "110V Outlets" is placed in the "ON" position at the main switch panel in the chart table. The circuit breaker controlling the outlets installed.
All functional circuits are protected by individual circuit breakers mounted on the main switch panel. Each circuit breaker, both A.C. and D.C. circuits, is a thermal type breaker and will automatically switch to the OFF position in the event of an overload. A minimum of 3 waiting times is required prior to resetting the breaker.

In the event of an overload, place the appropriate switch in the OFF position. Should the overload persist, leave the switch in the OFF position and troubleshoot the affected circuit. DO NOT try to bring the circuit into operation as serious damage may occur.

CIRCUIT PROTECTION

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Amperage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cabin Lighting</td>
<td>30 amps.</td>
</tr>
<tr>
<td>2</td>
<td>Running Lights</td>
<td>10 amps.</td>
</tr>
<tr>
<td>3</td>
<td>Bow Light</td>
<td>5 amps.</td>
</tr>
<tr>
<td>4</td>
<td>Mast Light</td>
<td>5 amps.</td>
</tr>
<tr>
<td>5</td>
<td>Spreader Lights</td>
<td>10 amps.</td>
</tr>
<tr>
<td>6</td>
<td>Water Pressure</td>
<td>15 amps.</td>
</tr>
<tr>
<td>7</td>
<td>Shower Sump (Opt.)</td>
<td>20 amps.</td>
</tr>
<tr>
<td>8</td>
<td>Head (Opt.)</td>
<td>* as specified</td>
</tr>
<tr>
<td>9</td>
<td>Refrigeration (Opt.)</td>
<td>* as specified</td>
</tr>
<tr>
<td>10</td>
<td>Instrumentation (Opt.)</td>
<td>* as specified</td>
</tr>
<tr>
<td>11</td>
<td>Converter (Opt.)</td>
<td>10 amps. (AC)</td>
</tr>
<tr>
<td>12</td>
<td>Hot Water Heater (Opt.)</td>
<td>15 amps. (AC)</td>
</tr>
<tr>
<td>13</td>
<td>Refrigeration (Opt.)</td>
<td>* as specified</td>
</tr>
<tr>
<td>14</td>
<td>AC Outlets</td>
<td>15 amps. (AC)</td>
</tr>
</tbody>
</table>

INSTRUMENTATION

Optional instrumentation installed is wired into the harnesses wherever possible. Terminal strips and/or plugs and recepticles are used to provide ease of maintenance. Consult individual manufacturer's manual for additional information.

If an Apparent Wind Indicator is installed on the main mast, a 7-terminal strip is installed to accommodate all wiring to the mast. Connector color codes are shown in Figure 5. A 7-terminal strip is installed on the forward engine room bulkhead below the terminal strips to accommodate the wiring for the AWI. This also provides access to enable the several circuits to be troubleshooted in the event of operational problems.

Optional radio installations: RG58A/U coaxial cable is used to connect the equipment to the mast mounted antenna with appropriate coaxial fittings. However, RG8/U is used only when specified and use is minimized due to installation requirements.

Factory installed instrumentation and radio equipment is provided in most instances, with a separate circuit breaker switch on the switch panel. However, if all positions of the switch panel are filled, equipment will be protected, and controlled by a single breaker combining all functions. Fathometers, however, are installed as self contained units having their own separate battery power. In such instances, circuit protection is not provided through the...
switch panel. Follow the individual manufacturer's recommendations pertaining to battery replacement.

Optional refrigeration installed is one of three types: engine or 12V D.C., or 115V A.C. The engine driven unit may also be a combination utilizing either 12V DC or 115V AC input power. Operation is automatic with engine operation or controlled from the central switch panel other times.

Optional electrically operated heads are controlled by push-button switches on each unit; however, when installed, a separate switch on the main switch panel must be placed in the ON position. Consult the individual manufacturer's manual for additional information.

THIS PANEL IS COMMON TO ALL BOATS

<table>
<thead>
<tr>
<th>TS1</th>
<th>TS2</th>
<th>TS3</th>
<th>TS4</th>
<th>TS5</th>
<th>TS6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TS7</th>
<th>TS8</th>
<th>TS9</th>
<th>TS10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

Switch Panel Labels:
- **TS1** - A, Opt. Hot Water, A.C.
- **B**, Opt. Converter, A.C.
- **TS2** - A, Opt. Outlets, A.C.
- **B**, Spare
- **TS3** - A, Opt. Spare
- **B**, Opt. Spare
- **TS4** - DC Connections
- **TS5** - DC Connections
- **TS6** - A, 12V Feeder from main switch
- **B**, Opt. 12 Ignition Cutoff for Converter
- **TS7** - A, 110A.C. from Shore Power Inlet
- **B**, Neutral from Shore Power Inlet
- **TS8** - A, A.C. Neutral return from Main Switch
- **B**, A.C. Ground (All A.C. Circuits)
- **TS9** - A, Opt. Converter output No. 1
- **B**, Opt. Converter output No. 2
- **TS10** - A, D.C. Neg. (All Circuits)
- **B**, Bond
The following circuit diagrams are in schematic form and should prove useful should service be required. Color coding has been noted where applicable to identify each circuit according to the listing indicated on a previous page.

Circuit Diagrams

TS4 Terminals
1. Cabin Lights - Blue
2. Bow Light - Yellow
3. Running Lights - Red
4. Water Pressure - Yellow
5. Radio (Opt.) - Blue
6. Wind (Opt.) - Orange
7. Speedo (Opt.) - White

TS5 Terminals
1. Spreader Lights (Opt.) - Orange
2. Masthead Light (Opt.) - White
3. Bilge (Opt.) - Grey
4. Shower (Opt.) - Brown
5. Head (Opt.) - Green
6. Spare 1 (Opt.) - Green
7. Spare 2 (Opt.) - Red
THRU HULLS

All underwater "thru hulls" mate with threaded seacocks to form a unit of maximum strength, adequately flanged inside and out. Caulked and tightened to solidly support the port. Seacocks can stop any underwater ports when line maintenance or other causes demand. High integrity "Wonder Flex" hose is used for all underwater plumbing.

Above water plastic thru hulls are fitted with gate valves to ensure full drainage. They too can be fully closed if the occasion warrants. Reopen when leaving the boat to permit self bailing. Remove any paper, rags, etc., from the cockpit or other drainage scupper to avoid retarded drainage.

Self bailing cockpit drains are led to seacocks which should be open when boat is unattended to prevent water from flooding below decks. Metal objects and trash should be removed by hand from the deck ports to avoid stoppage. Periodic flushing to assure full flow is recommended.
HAND BILGE PUMP

A manually operated bilge pump (handle in the Gear Box), has been conveniently located in the cockpit. The suction hose runs to a strainer in the bilge sump with discharge through a gate valve above water thru hull.

ELECTRIC BILGE PUMP

Opt. electric pumping of the bilge is accomplished by aligning "Y" valve with the bilge suction hose and the "Bilge" switch on the electrical control panel. Be sure to select proper "Y" valve position when using the shower. Periodically (or when stoppage indicated) inspect the strainer at the end of the suction line clogging. After cleaning, replace at the bottom of the sump. Other drainage systems may have been arranged to meet your part needs. You may want to note them here or to label them for your "guests" convenience.

DRAINS

Sink drains are piped to thru hull outlets with appropriate short runs of flexible hose - no traps.

SHOWER

The (opt.) shower has a sump drain that is piped to the electric bilge pump. To operate, set the "Y" valve lever to align with shower drain suction hose and turn on the "shower" switch at the electrical control panel. Then operate the pump when showering the convenient push-pull switch in the shower compartment as the need demands.
ICE CHEST

The box is of fiberglass construction with a minimum of 2-1/2" polyurethane foam insulation.

Teak gratings are provided to permit air circulation (a must for general cooling.) The box cover should be replaced immediately after each use for ice economy. When not in use be sure the ice chest has been pumped dry. The box is usually drained by a hand pump mounted in the galley sink. A small tray of charcoal will help to eliminate development of mildew and odor.

To service, the hand pump piston assembly may be removed by unscrewing the top cap (just below the knob) and pulling outward. If the pump develops a leak at the top cap it can be corrected by replacing the "O" ring seal. Remove knob, top cap and pick out the damaged "O" ring from brass bushing mounted in the cap. Replace "O" ring and be careful not to cut it when replacing cap over threads. The pump valve can be accessed by removing screws at base of body.
FRESH WATER SYSTEM
(POTABLE)

Fresh water storage is provided in a welded 16 gaage stainless steel tank located under the floor hatch. Access is through a 4" dia plate that unscrews from the top of the tank. Supply is through this hole and the quantity stored varies with the boat (see spec sheet) and is determined by inspection. The tank is vented. Capacity is noted on page 2.

ONLY PURE POTABLE WATER SHOULD BE SUPPLIED TO THE TANK

To purify any questionable water - add 1/6 oz. of chlorine (or household bleach) per 10 gallons, or 1 oz. for a 60 gallon tank. Chlorine tablets are also available - follow package instructions.

Manual fresh water pump systems have a check valve at the tank which supports the supply of water with a minimum of pumping. Electrically supplied water is drawn from the tank by a 12V pump. With the "ON" it automatically runs to maintain water pressure as a faucet is opened. If water is drawn when the pump switch is off, a low water cut off may require resetting. This cut off protects against "drain down" through a "Low water cut off" control. In normal operation the pump should start after a faucet is opened and shortly after it is fully closed. If the pump runs periodically when no faucets are open, a leak in the system is indicated. Turn off the pump switch until the leak is located to prevent water wasteage. A check valve at the tank maintains "prime" at the pump but the unit is self priming.
HOT WATER

The optional Raritan hot water system gets its heat from an immersion type 1250 watt, 110V electric heating element and a heat exchanger from the engine cooling system. The engine coolant does not directly contact the fresh water supply. The glass lining of the hot water tank and a rod type magnesium anode help to keep water crystal clear and free of metallic waste.

A thermostat (under the tank control cover plate) can be adjusted from 120° to 190°. The normal hot water temperature setting is 150°. Water heated by the alternate engine heat exchanger system may get hotter than 150°. The tank is fully insulated with customary fiberglass insulation. When using electric energy a recovery rate of 1 gallon per hour - 40° rise is accomplished.

The tank is fully protected by an ASTE safety relief valve exhausting to bilge and was designed to withstand 300 lb. pressure.

Water conservation should be practiced unless a resupply is readily available.
THE HEAD

See Manufacturer's warranty and instruction sheets.

The head uses sea water in an independent hand operated system. Seacocks open, water should be hand pumped through the unit. Wiping the sides aids in the subsequent flushing operation. Residual water will minimize staining.

The system has a controlling hand inlet valve to regulate rate of inflow. Normally it pumps out faster than in. In flushing if the water in the bowl rises instead of receding it may be due to trash momentarily lodged under the outlet flapper valve. This can be cleared by partially (or completely) closing the inlet valve and continuing to pump. A degree of resistance will be noted in pumping which is normal. After the bowl clears of all debris, open the valve again and flush with a few additional strokes to clear the discharge line. TO PREVENT OVERFLOW UNDERWAY, CLOSE THE INLET VALVE.

Don't throw hard or stringy substances down the toilet. Avoid paper towels, (high wet strength paper), sanitary napkins, tampons, and plastic tipped cigarette or cigar butts, (ordinary cigarettes are O.K.). Bobby pins, razor blades and other hard objects must be "fished out" to avoid mechanism damage.

The bowl can be cleaned with "Ajax" and deodorized with "Clorox". Don't use Pine Oil, Lysol, Lestoil, etc., kerosene like solvents as they will damage and swell rubber parts. (Don't winterize with alcohol or kerosene.) Put vaseline or mineral oil on the piston for easier action.
Your alcohol stove uses denatured 95% ethyl alcohol or 91% iso-
alcohol stove fuel (containing less than .003% by weight non vo-
matter.)

See alcohol tank location on page 2. After adding alcohol up to
full, pressurize the supply tank to 10 to 15 lbs. (35 psig max.
pressure pump from gear box. A pressure guage and safety shut
is on the tank.

There is a safety shut off immediately below the stove that shows
"off" when not in use. The stove was installed in gimbals permit-
(with shelf stowed in back and locking bolt released) a 45° swi
either side of vertical. A flexible supply hose accommodates the
motion.

TO OPERATE:

DO NOT FILL BURNER FLANGE. The priming cup is located at the bot-
of the burner.

1. Preheat burner - momentarily open burner valve counter clock-
(squirting sound) to fill priming cup 3/4 full, then close
and ignite alcohol.

2. Light burner - when priming alcohol (step 1.) is completely
consumed, open valve counter-clockwise and ignite vaporized
 alcohol. (hissing sound).

Do not put utensils over burner until it is burning with appro-
controlled flame. If the flame pulsates, the valve on the back
the stove should be adjusted to reduce pressure at the burner.
If too much alcohol (priming cup more than 3/4 full) is used, the flame will flare up - not usually serious.

If too little is used, the burner will not get hot enough to light.

TO SHUT OFF A BURNER - Turn valve clockwise all the way.

A hot burner can be relit. Otherwise reprime. A hot burner produces a hissing sound when turned on.

To clean burner orifice, rotate valve to extreme counter-clockwise position and then return to clockwise position.

Oven operation is similar to surface burners except that baffles must be raised when priming burner. Temperature regulation is by manual adjustment. Control is under the oven door.

Do not replace the counter shelf until the stove has cooled down.

USE WATER TO PUT OUT ALCOHOL FIRES. SMOTHER GREASE FIRES OR USE BAKING SODA OR A CLASS B FIRE EXTINGUISHER.
KEROSENE OVEN RANGE

Your kerosene fuel tank location is shown on Page 2. Pressure pump is in gear box.

TO OPERATE:

1. Pump to 15 lbs. air pressure to pressurize tank. The burner must be preheated as follows; Fill the priming cup beneath the burner about 3/4 full of alcohol. DO NOT OVERFILL. Light the priming alcohol and wait until consumed. Open the control and light the burner. Pre-heated burner produces vaporized fuel and will ignite like a gas stove burner.

2. Incorrect burning: Insufficiently preheated burner may flare up. Shut off and restart as described above. If flame is burning with a crackling sound, shut off flame, reopen and relight immediately by holding a match to the burner.

3. General - dirt and soot that may have collected in the priming cup and on the burner should be removed, as the flame otherwise may burn with a yellow color. The first time a stove is lit a flame may be yellow for a few minutes, but will turn blue a while.

4. Shutting off - Turn wheel to extreme right. A "Ball Valve" installed in the fuel line under the stove should be used as shut off. Air pressure in tank may be released to prevent leakage.

Cleaning the nozzle - The nozzle is automatically cleaned by turning the knob to the extreme left position. Clean only when burners are cold, before initial starting.

5. No rough scouring powders or oven cleaners should be used for cleaning to avoid damaging the finish.
Your optional propane stove has a shut off at the tank and immediately below the stove.

The surface burners operate the same as ordinary gas stoves. The speed and flexibility of gas top burners is a special advantage if you're in a hurry. However, after a certain point a higher flame won't cook foods one bit faster. There are a few general rules for selecting the right flame height.

1. The flame should never extend beyond the bottom of the pan.
2. Pans which conduct heat slowly (stainless steel and cast iron, for example, should be used with a low or medium flame - unless you are cooking in liquid.
3. Foods cook just as quickly at a gentle rather than a furious rolling boil - in either case, the water temperature is 212°F.

About covers - a good cover makes utensils perform better. Cover pans whenever you can so foods cook with maximum speed and minimum cleanup.

The oven burner requires that the oven pilot flame be ignited to light.

TO LIGHT PILOT - Depress oven control knob and turn to "OFF" position. Wait 30 seconds and then light oven burner pilot. PILOT MUST BE LIGHTED WHENEVER CONTROL IS AT "OFF" SETTING.
"PILOT OFF" POSITION ON THERMOSTAT KNOB - Turning oven control to "PILOT OFF" position turns off gas to oven burner and oven�
When the pilot is lighted, just push the oven control knob in a turn to the temperature you want. The oven burner will come on automatically. It may take several seconds to light but don't be concerned. This is because lighting involves a series of steps which take a little time.

Oven temperature - as you use the oven, you might notice that the oven burner turns on and off as the oven operates. This is the we get the low temperatures you'll find so useful. Since the oven burner is off part of the time, you may wonder whether food needs to be cooked longer. The answer is no. The amount of heat is same - it's just applied in a different way.

Preheating the oven - Preheating means bringing the oven up to temperature before putting in the food. Generally speaking, pre when using the oven at temperatures below 225 and for most base foods (breads, cakes, etc.). With other foods, whether or not preheat may change the timing slightly, but the end results should be the same.

Air Circulation - Gas ovens must have free circulation of air. Heated air comes in through the openings in the oven bottom to fresh air, even-temperature cooking. Several things can block change this air flow and cause poor results.
1. Pan touching the oven sides - this blocks air flow and transmits extra heat to the pan from the sides of the oven. Cakes may bake unevenly and food at the edge of the pan may scorch.

2. Pans too large for the oven - Here the most common offender is a cookie sheet which is too big. There should be at least 1 to 2 inches between the edge of a utensil and any oven surface. A cookie sheet can fit into an oven but be so large that it blocks air circulation. Because heat is trapped under the pan, cookies will burn on the bottom before the tops are brown. Crowding pans can also cause uneven baking. Allow 1 to 2 inches for air to circulate between utensils.

3. In an effort to keep a new range sparkling clean, users sometimes misuse foil. It should never be used to cover oven racks or so that it blocks off any of the openings provided for air circulation. It should not be used directly under a utensil, because it will reflect heat away from the bottom of the pan.

If you use foil to catch a spillover, cut a piece just a little larger than the pan and put it on the oven bottom - but not over the air openings.

Oven Cleaners - oven cleaners (particularly the spray type) can trick the thermostat sensing device so that it does not sense oven temperature accurately. If you must use oven cleaners, follow directions exactly and carefully wipe any residue off the sensing bulb (metal tube) in the oven.
Setting the Dial - oven temperatures will be most accurate when set the dial by turning just TO the temperature - not up to a temperature and back. This also applies when turning down to warm temperature.

Range Size - your range is designed to do a good job of yacht cooking. It is considerably smaller than a standard range and be expected to have the same capacity and capabilities. For example, you cannot bake a cake in a tube pan because of height limitations.

In the interest of safety it is important that the properties of liquefied petroleum gases be understood and that safe practices in their use be followed. Under moderate pressure the gases liquefy upon relief of the pressure they are readily converted into their gaseous state. Advantage of this characteristic is taken in their usage, and for convenience they are shipped and stored under pressure as liquids. In their gaseous state they present a hazard comparable to any flammable natural or manufactured gas, except that they are heavier than air. Although the vapors tend to sink to the bottom of an enclosed compartment into which they are released, they diffuse throughout, and are not readily dispelled by overhead ventilation. Safety requires the prevention of escape of any liquefied petroleum gases, for when mixed with air in certain proportions they will explode if ignited.

All liquefied petroleum gases are effectively odorized by an agent of such character as to indicate positively, by a distinct
odor, the presence of gas.

CAUTION

1. Keep container valves closed when boat is unattended. Close immediately in any emergency.

2. Be sure all appliance valves are closed before opening container valve.

3. Always apply lit match or other flame to burner before opening burner valve.

4. Close master valve on appliance whenever appliance is not in use.

5. Test system for leakage at least twice a month and after any emergency in accordance with the following procedure.

With appliance valves closed, the master shut off valve on the appliance open, and with one container valve open, note pressure on the gage. Close container valve. If pressure drops, locate leak by application of liquid detergent or soapy water solution at connections. Repeat test for each container in multi-container.

NEVER USE FLAME TO CHECK FOR LEAKS

Gas containers shall be condemned and withdrawn from service when a leak; when corrosion, denting, bulging or other evidence of rot exists to the extent they may be weakened appreciably, or when they have been involved in a fire.

Gas tanks connect with a Left Hand Thread. DO NOT OVERTIGHTEN in filling an excess condition develops the safety bleeder valve to vent excess gas. DO NOT TAKE A BLEEDING TANK ABOARD.
CLEANING - DECK AND HULL

The high gloss finish of Wright/Allied Yachts was developed through extensive experience, adequate mold maintenance and painstaking quality control. When it was released from the mold it was as shiny as a baby.

The "Gel coat deep" color is a glass hard non porous surface that does not trap dirt. It will wipe clean if attended to "early on in the game".

The following are examples and obvious sources of damage that can come from surface appearance -

AVOID THEM TO MINIMIZE CLEANING CHORES

1. BARGING - Metal dock fittings, tools, etc.
2. ABRASIONS - Scratches caused by gritty substances, dirt and sand in deck shoes, etc.
3. STAINS - Crocking from vegetable dyes, heel scuffs, rust, mineral deposits at drainage location, etc.
4. SMEARS - Grease oil and tars.

Delay in clean up multiplies and aggravates these nuisances.

If the deck is wet when you first go aboard, use a good chamois and wipe up the critical traffic areas before tracking spreads. (a chamois should be treated like your own skin. Use clean water, soap and rinse adequately.)

When overall cleaning is necessary, use a non abrasive detergent solution. (Spic & Span), Bristle Brush, Mop or sponge followed by adequate rinsing and chamois to avoid water spotting and streaks.
After the fiberglass areas have generally dried out, any remaining spots and discolorations can then be attacked on a spot by spot basis with Mirror Glaze (approved for fiberglass) or other cleaner/polish which usually accomplish the job in a single application, followed by polishing with a clean soft cloth.

Mild abrasions can be scrubbed with "non abrasive" household cleaners, "Bon Ami", etc. More severe abrasions may require "compounding", wiped clean and hand polished.

Grease smears and dyes will usually respond to Counter Top and Stainless Steel polish and cleaner such as "Liquid Gold" or any similar non-abrasive cleaners that your experience and availability suggest.

Deep scratches should be scrubbed to remove all "deep down" foreign matter. Then wax to fill and seal.

Unusually severe conditions may demand gelcoat repair by "addit -and subsequent very fine wet sanding (grit 600). Such repair is usually performed by yacht repair experts to avoid exaggeration of an already difficult condition.
WAXING

A residual trace of mold release wax imparted the original high gloss to the Gelcoat. If desired, hard Carnuba (Automotive Body) wax may be used for surface protection and high gloss hull maintenance. However, it should be remembered that even the highest quality Carnuba waxes produce a film layer that yellows and develops haze under most weathering conditions. Wax on the deck may produce excessive slipperyness. The hull and all smooth surfaces of the deck should be waxed at least once a season.

TEAK TRIM

Teak was supplied because of its many attributes in use and weathering. When exposed to moisture, sun, etc., teak "weathers" from its initial brown wood shade through to silver. Frequent oiling with "Teak oil" should prevent drying out and cracking and maintain dark appeal of wood. Teak cleaners and brighteners also serve to renew and restore surface color and weather resistance.

Smears may be removed by light sanding with the grain. Sanding reveal the original color etc., re-oiling and weathering will tone the coloring.

Varnish and Polyurethane finishes may be applied to teak. Selection life and care of varnish is dependant on the varnishes. Even high varnish is regularly maintained, stripping is eventually required to return the wood to an overall uniform appearance.

Protect the Gelcoat by masking around woodwork to be stripped.
Opaque plastic hatches can be cleaned with any of the "counter top" cleaners. Metal hatches may be scrubbed or repainted. LEXAN HATCHES AND THE PLEXIGLASS PORTS SHOULD BE WASHED WITH MILD WINDOW CLEANING MATERIALS, (WINDEX.) However, since plastics are softer than glass, cleaning with razor blades or other sharp or abrasive material should be avoided or permanent scratches may result. Lexan hatches should not be cleaned with spray cleaners that use "Freon" propellant.

Tinted (dark smoke color) Lexan hatch covers lets in 80% of available light, allows you to look out with ease, yet is nearly impossible to see through from the outside. The sealing gasket is of specially formulated neoprene for salt water and pressure resistance.

The frame and Lexan are practically unbreakable, but for your own safety, open and close them from a position where you have two hands available, one to regulate position and the other to turn the adjusting locks.

Plastic port frames can be cleaned with denatured alcohol, but other chemical cleaners that may attack the plastic finish.
STAINLESS STEEL

Stainless steel can be "stained" by extended contact with foreign materials. Your yacht has been carefully assembled with stainless steel fastenings throughout. Before installing other fixtures, fasteners or cotter pins, etc., be sure they are not corrosive. Stainless steel usually wipes clean with a chamois. Stainless steel polish and cleaner may, of course, be useful.

The 1 X 19 rigging wire and terminals are stainless for utility and long life. They can be damaged by excessively sharp bending or abrasion by concrete bulkheads, piers, etc., but unless externally damaged, are generally maintenance free. Parted strands or severe kinks indicate replacement. At least each season stainless steel swage fittings, turn buckles, etc., should be examined for stress cracks or other abnormal conditions.

ALUMINUM

The aluminum masts, spreaders, masthead parts, etc., have been carefully anodized to a dull grey finish and require minimal maintenance. They should be stepped by skilled craftsmen only.

Shackles and other metal parts in sheets that repeatedly strike against aluminum parts can cause unsightly blackened area. If you "hear them" correct the cause before permanent harm is done.

SAIL LOCKERS

The sail locker fences were snugly fitted and interlocked to minimize the need for fasteners. Usually a single obvious turn button releases the 1st fence. Subsequent sections twist and lift out
LOCKS
Weatherproof padlocks of your own selection can be fitted into the sail locker "Anti Rattler" hatch fasteners.

CABIN
Included in the attached literature is a booklet covering the care and cleaning of Herculon fabrics. They note: "The best time to remove a spot is while it is still a spill". Avoid solvents that may harm backings and filler.

Counter tops, stainless steel sinks, chrome faucets, can all be maintained with a cleaner like "Scott's Liquid Gold". Stainless steel and counter top cleaner. Formica plastic laminate bulkheads require minimal care, but their sheen may be renewed by any of the quality laminate cleaners.

The interior teak can be renewed with teak oil or any of the house finishes now on the market such as "Pledge", "Pride", or "Liquid for wood.

BERTHS
Some cabin plan arrangements provide a telescoping berth held in place by barrel bolts. Pull out to extend and fill the gap with the prefitted plywood backed cushion. Others have a swing up backrest.

Some dinette tables fold up and have folding legs. The short stud in the bottom of the leg should be positioned in the small steel retainer in the sole to avoid sole scratches and provide more rigid leg support.
Drawers drop into place in the closed position, lift and then push to open.

Locker doors provide access to several storage areas. They are closed by elbow catches located where they can be easily disengaged with your index finger. Don't force any door or drawer until you unlatched it properly.

The dual purpose privacy door to the forward compartment serves as both a hanging locker door or a companionway door. The top hinges up to complete the closure. A turn button secures the forward section.

Additional locker space is accessed through removable cover boards under the cushions of most berths and settees.
STEP 2 Check propeller shaft nuts for tightness and make sure cotter pin is completely bent around shaft.

STEP 3 Check hull for any chips in gel coat which may have occurred during shipment, and repair.

STEP 4 Touch up any bottom paint that may require it.

STEP 5 Seacocks are normally opened for shipment so make sure they are all closed before launching. Check all instrument thru hulls for proper cap, plug or transducer.

STEP 6 The propeller shaft packing gland nut is normally hand tightened. Check this and make sure it is loosened before launching.

STEP 7 Check all seacock tail piece nuts for tightness. Tighten hand and then 1/2 turn with a wrench should do it. At the factory we only hand tighten for shipment because of the leather washer within the tail piece. With tightened tail piece the leather washer would dry out and crack. While going through this procedure check all hose clamps on seacock connections for tightness.

STEP 8 Check the operation of all gate valves and make any adjustments if required. Leave gate valves open. They are all above waterline and do not require any attention during launching.

STEP 9 Check rudder shaft packing gland nut for tightness. This is normally done at plant but a visual check before launching saves a lot of unnecessary work later. Packing gland nut should be hand tight and then 1/2 turn with a wrench. Then tighten locking nut.

STEP 10 Visually check propeller shaft coupling set screws and make sure they are wired.

STEP 11 Check engine control linkage. Make sure clutch is fully engaging in both forward and reverse. You should be able to feel it click into forward and reverse. With a hydraulic clutch it is written on the top of the clutch housing. Make sure throttle arm is hitting both stops on engine. Make sure stop cable hits both stops on engine. This saves a lot of problems once the launching has been completed and the crane or whatever has unhooked from you.

STEP 12 If your boat has been in winter storage check all deck drain fittings, vents and hoses before launching for bee hives, in the lines. This is quite common and could cause a great amount of problems. If your boat is equipped with a holding tank and vented overboard, a plugged vent line could cause tank to burst, causing quite a mess. Forward tank vent thru hulls have also been known to plug with soap from washing decks down, so make sure this is all checked before starting engine.
Every fuel tank is filled with 15 gallons of fuel, the fuel system bled and engine run at the factory. The entire fuel, cooling, oil and exhaust systems are tested and checked out before shipping. Fuel tanks are pressurized and tested twice before installation. Even with all this testing and checking it is still necessary to double check the following items.

Check all fluid levels - oil, cooling, water and gearbox oil (see engine manual).

Check all fuel line fittings and connections for tightness from tank to engine. Make sure all fuel valves are open.

Examine all drive belts for tension and alignment (see engine manual).

Check all cooling water hoses and exhaust hose connections for tightness. Make sure exhaust thru hull valve is open.

Check fuel fill and vent hoses at tank and at vent thru hull for tightness, also at fill deck plate. If possible fill tank at this time and check tank and fittings for leaks. It isn't possible to fill at this time these items should be checked at the first filling.

Check the engine starting circuits according to the following steps:
(a) Place reverse gear control in neutral position.
(b) Make sure no one is working or anywhere around propeller shaft. This is very important!!
(c) Turn battery master switch on.
(d) Pull out stop cable, check to make sure it is working properly and hold knob out.
(e) Push start button just enough to hear engine crank and then release button. Do not crank the engine too long or water pump impeller damage may occur. The engine should be cranked more than three seconds.
(f) Turn battery master switch off and push in stop cable.

Check the engine mount adjustment nuts for tightness and the lag bolts which secure each mount to engine bed.
STEP 1
Do not open any seacocks, let the boat sit in water for fifteen to thirty minutes. During this period visually check all seacocks for leaks. If a leak appears between the hull and the seacock flange the boat will have to be hauled and the thru hull rebedded. If a leak appears around the body of the seacock, tighten the valve body nuts to stop leak while boat is still in water.

Make sure to check all seacocks. If leaks are found determine what course of action is to be taken before hauling. Also check any instrument thru hulls, consult individual instrument manuals if leaks are found. Be careful not to overtighten plastic thru hulls.

STEP 2
After seacocks have been determined water tight, take one seacock at a time, open it and check tail piece and hose connection for leaks. If a leak appears around the tail piece wait a few seconds and let the leather washer swell inside the tail piece, then tighten nut. If leak still appears around tail piece, remove the tail piece and check out the leather washer. Make sure leather washer is properly seated before reinserting tail piece. Continue with each seacock one at a time. Make sure you close seacock before removing the tail piece.

STEP 3
The loosened propeller shaft packing gland must have a drip in order to keep the shaft cool while in operation. If no drip occurs and engine is ready for starting, start engine and run under load forward and reverse until a drip has been established. Shut engine down and adjust nut by hand until you establish a drip about every ten or fifteen seconds. After this is done, tighten locking nut against packing gland nut.

The time between drips will vary on new boats until the engine has some hours under load. If the dripping stops, loosen gland nut completely and run under load for a while, forward and reverse to clean out packing gland and start dripping. Shut down engine and then adjust nut.

STEP 4
The rudder shaft packing gland should be water tight with the binding shaft. In some cases the rudder shaft packing gland will be above the waterline, so the only way to check it properly is to check it while underway.

STEP 5
Check exhaust thru hull while engine is running.

STEP 6
Check bilge pump thru hulls, whenever pump is put to use, make sure valve is open.

WINTER SHIPMENTS FROM FACTORY

During winter shipments your engine is fully winterized by the factory before shipment. During initial start up you will notice some anti-freeze running through your exhaust system. Do not be alarmed by this, as your engine warms up it will disipate.

The fresh water system is also winterized before shipment with a non-toxic drinkable anti-freeze, blueish in color. Though the water is harmless, we advise you to flush your tank out and run some fresh water through the system before consumption.
SEAWIND II
L.O.A.: 31'7"
L.W.L.: 25'6"
BEAM: 10'5"
DRAFT: 4'6"
SAIL AREA: 555 sq.ft.
BALLAST/DISP. RATIO: 39%
THEORETICAL MAX. HULL SPEED: 6.82 kts.
DISPLACEMENT/LENGTH: 401.16
SAIL AREA/DISPLACEMENT: 83.44