

A Boss’s Guide to Software
Process Improvement

Jack G. Ganssle

jack@ganssle.com

The Ganssle Group
PO Box 38346

Baltimore, MD 21231
 (410) 504-6660

fax (647) 439-1454

A Boss’s Guide to Software Process Improvement

© 2004 The Ganssle Group. This work may be used by individuals and companies, but

all publication rights reserved.

I hear from plenty of readers that their bosses just don’t “get” software. Efforts to
institute even limited methods to produce better code are thwarted by well-meaning but
uninformed managers chanting the “can’t you just write more code?” mantra.

Yet when I talk to the bosses many admit they simply don’t know the rules of the game.
Software engineering isn’t like building widgets or designing circuit boards. The
disciplines are quite different, techniques and tools vary, and the people themselves all
too often quirky and resistant to standard management ploys. Most haven’t the time or
patience to study dry tomes or keep up with the standard journals. So here’s my short-
intro to the subject. Give it to your boss.

Dear boss: the first message is one you already know. Firmware is the most expensive
thing in the universe. Building embedded code will burn through your engineering
budget at a rate matched only by a young gold-digger enjoying her barely-sentient
ancient billionaire’s fortune.

Most commercial firmware costs around $15 to $30 per line, measured from the start of a
project till it’s shipped. When developers tell you they can “code that puppy over the
weekend” be very afraid. When they estimate $5/line, they’re on drugs or not thinking
clearly. Defense work with its attendant reams of documentation might run upwards of
$100 per line or more; the space shuttle code is closer to $1000 per line, but is without a
doubt the best code ever written.

$15-$30 per line translates into a six figure budget for even a tiny 5k line application.
The moral: embarking on any development endeavor without a clear strategy is a sure
path to squandering vast sums.

Like the company that asked me to evaluate a project that was 5 years late and looked
more hopeless every day. I recommended they trash the $40m effort and start over, which
they did. Or the startup which, despite my best efforts to convince them otherwise,
believed the consultants’ insanely optimistic schedule. They’re now out of business - the
startup, that is. The consultants are thriving.

Version Control
First, before even thinking about building any sort of software, install and have your
people use a version control system (VCS). Building even the smallest project without a
VCS is a waste of time and an exercise in futility.

The NEAR spacecraft dumped a great deal of its fuel and was nearly lost when an
accelerometer transient caused the on-board firmware to execute abort code… incorrect
abort code, software that had never really been tested. Two versions of the 1.11 flight

A Boss’s Guide to Software Process Improvement

© 2004 The Ganssle Group. This work may be used by individuals and companies, but

all publication rights reserved.

software existed; unhappily, the wrong set flew. The code was maintained on
uncontrolled servers. Anyone could, and did, change the software. Without adequate
version control, it wasn’t clear what made up correct shipping software.

A properly deployed VCS insures these sorts of dumb mistakes just don’t happen. The
VCS is a sort of database for software, releasing the code to users but tracking who
changed what when. Why did the latest set of changes break working code? The VCS
will report what changed, who did it, and when, giving the team a chance to efficiently
troubleshoot things.

Maybe you’re shipping release 2.34, but one user desperately requires the old 2.1
software. Perhaps a bug snuck in sometime in the last 10 versions and you need to know
which code is safe. A VCS reconstructs any version at any time.

Have you ever misplaced code? In October of 1999 the FAA announced they had lost the
source code to all of the software that controlled air traffic between Chicago and the
regional airports. The code all lived on one developer’s machine, one angry person who
quit and deleted it all. He did, however, install it on his home computer, encrypted. The
FBI spent 6 months reverse engineering the encryption key to get their code back. Sound
like disciplined software development? Maybe not.

Without a VCS, a failure of any engineer’s computer will mean you lose code, since it’s
all inevitably scattered around amongst the development team. Theft or a fire – unhappily
everyday occurrences in the real world – might bankrupt you. The computers have little
value, but that source code is worth millions.

The version control database – the central repository of all of your valuable software –
lives on a single server. Daily backups of that machine, stored offsite, insures your
business’s survival despite almost any calamity.

Some developers complain that the VCS won’t protect them from lazy programmers who
cheat the system. You or your team lead should audit the VCS’s logs occasionally to be
sure developers aren’t checking out modules and leaving them on their own computers. A
report that takes just seconds to produce will tell you who hasn’t checked in code, and
how long it has been out on their own computers.

Version control systems range in price from free (like the GNU products) to expensive,
but even the expensive ones are cheap. See http://better-
scm.berlios.de/comparison/comparison.html
 for a comprehensive list of products.

A Boss’s Guide to Software Process Improvement

© 2004 The Ganssle Group. This work may be used by individuals and companies, but

all publication rights reserved.

Firmware Standards
What language is spoken in America? English, of course, but try talking to random
strangers on a street corner in Baltimore today. The dialects range from educated middle-
American to incomprehensible near-gibberish. It’s all English, of a sort, but it sounds
more like the fallout from the Tower of Babel.

In the firmware world we speak a common language: C, C++ or assembly, usually. Yet
there’s no common dialect; developers exploit different aspects of the lingos, or construct
their programs using legal but confusing constructs.

The purpose of software is to work, of course, but also to clearly communicate the
programmer’s intentions to maintenance people. Clear communications means we must
all use similar dialects. Someone – that’s you, boss – must specify the dialect.

Figure 1: Real C code… but what dialect? Who can understand this?

The C and C++ languages are so conducive to abuse that there’s a yearly obfuscated C
contest whose goal is to produce utterly obscure but working code. Figure 1 is an excerpt
from one wining entry; this is real, working, but utterly incomprehensible code. Everyone
wants the URL to see other bizarre entries, but forget it! These people are code terrorists

A Boss’s Guide to Software Process Improvement

© 2004 The Ganssle Group. This work may be used by individuals and companies, but

all publication rights reserved.

who should be hunted down and shot like the animals they are! Vow that your group will
produce world-class software that’s cheap to maintain.

The code won’t be readable unless we use constructs that don’t cause our eyes to trip and
stumble over unusual indentation, brace placement and the like. That means setting rules,
a standard, used to guide the creation of all new code.

The standard defines far more than stylistic issues. Deeply nested conditionals, for
instance, lead to far more many testing permutations than any normal person can manage.
So the standard limits nesting. It specifies naming conventions for variables, promoting
identifiers that have real meaning. Tired of seeing i, ii, and (my personal favorite) iii for
loop variable names? The standard outlaws such lazy practices. Rules define how to
construct useful comments. Comments are an integral and essential part of the source
code, every bit as important as for and while loops. Replace or retrain any team member
who claims to write “self commenting code.”

Some developers use the excuse that it’s too time consuming to produce a standard.
Plenty exist on the net; mine is in Word doc format at www.ganssle.com/misc/fsm.doc. It
contains the brace placement rule that infuriates the most people… so you’ll change it
and make it your own.

So write or get a firmware standard. And boss, please work with your folks to make sure
all new code follows the standard.

Code Inspections
What’s the cheapest way to get rid of bugs? Why, just don’t put any in!

Trite, perhaps, yet there’s more than a grain of wisdom there. Too many developers crank
lots of code fast, and then spend ages fixing their mistakes. The average project eats 50%
of the schedule in debugging and test! Reduce debugging, by inserting fewer bugs, and
accelerate the schedule.

Inspect all new code. That is, use a formal process that puts every function in front of a
group of developers before they spend any time debugging. The best inspections use a
team of about 4 people who examine every line of C in detail. They’ll find most of the
bugs before testing.

Study after study shows inspections are 20 times cheaper at eliminating bugs than
debugging. Maybe you’re suspicious of the numbers – fine, divide by an order of
magnitude. Inspections still shine, cutting debugging in half.

More compellingly it turns out that most debugging strategies never check half the code.
Things like deeply-nested IF statements and exception handlers are tough to test. My

A Boss’s Guide to Software Process Improvement

© 2004 The Ganssle Group. This work may be used by individuals and companies, but

all publication rights reserved.

collection of embedded disasters shows a similar disturbing pattern: most stem from
poorly executed, pretty much untested error handlers.

Inspections and firmware standards go hand in hand. Neither works without the other.
The inspections insure programmers code to the standard, and the standard eliminates
inspection-time arguments over stylistic issues. If the code meets the standard, then no
debates about software styles are permitted.

Most developers hate inspections. Tough. You’ll hear complaints that they take too long.
Wrong. Well-paced inspection meetings examine 150 lines of code per hour, a rate that’s
hardly difficult to maintain (that’s 2.5 lines of C per minute), yet that costs the company
only a buck or so per line. Assuming, of course, that the inspection has no value at all,
which we know is simply not true.

Your role, boss, is to grease the skids so the team efficiently cranks out fabulous
software. Inspections are a vital part of that process. They won’t replace debugging, but
will find most of the bugs very cheaply.

Figure 2: Shaving the schedule with code inspections.

Originally I said code inspections are 20 times cheaper than debugging. That’s quite a
claim! Figure 2 shows how that at 20x, given that debugging typically consumes half the
schedule, using inspections effectively lets you divide the schedule by 1.9.

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

1 2 4 5 6 7 9 10 11 13 14 15 17 18 19

Code Inspection Effectiveness

Sc
he

du
le

 D
iv

id
er

A Boss’s Guide to Software Process Improvement

© 2004 The Ganssle Group. This work may be used by individuals and companies, but

all publication rights reserved.

Don’t believe the 20x factor? Divide it by an order of magnitude. Figure 2 shows even at
that pessimistic figure you can divide the schedule by 1.3.

Have your people look into inspections closely. The classic reference is Software
Inspection by Gilb and Graham (Addison-Wesley, NY NY; 1993, ISBN 0201631814),
but Karl Wiegers’ newer and much more readable book Peer Reviews in Software
(Addison-Wesley, NY NY, 2001, ISBN 0-201-73485-0) targets teams of all sizes
(including solo programmers).

Chuck Crap
Toss out bad code.

A little bit of the software is responsible for most of the debugging headaches. When
your developers are afraid to make the smallest change to a module, that’s a sure sign it’s
time to rewrite the offending code.

Developers tend to accept their mistakes, to attempt to beat lousy code into submission.
It’s a waste of time and energy. Barry Boehm showed in Software Engineering
Economics that the crummy modules consume 4 times the development effort of any
other module.

Identify bad sections early, before wasting too much time on them, and then recode.
Count bug rates using bug tracking software. Histogram the numbers occasionally to find
those functions whose error rates scream “fix me!”… and have the team recode.

Figure on tossing out about 5% of the system. Remember that Boehm showed this is
much cheaper than trying to fix it.

Don’t beat your folks up for the occasional function that’s a bloody mess. They may have
screwed up, but have learned a lot about what should have been done. Use the experience
as a chance to create a killer implementation of the function, now that the issues are
clearly understood. Healthy teams use mistakes as learning experiences.

Use bug tracking software, such as the free bugzilla (http://www.bugzilla.org/), or any of
dozens of commercial products (nice list at http://www.aptest.com/resources.html).

Even the most disciplined developers sometimes do horrible things in the last few weeks
to get the device out the door. Though no one condones these actions, fact is that quick
hacks happen in the mad rush to ship. That’s life. It’s also death for software.

Quick hacks tend to accumulate. Version 1.0 is pretty clean, but the evil inflicted in the
last few weeks of the project add to problems induced in 1.1, multiplied by an ever-

A Boss’s Guide to Software Process Improvement

© 2004 The Ganssle Group. This work may be used by individuals and companies, but

all publication rights reserved.

increasing series of hacks added to every release. Pretty soon the programming team says
things like “we can’t maintain this junk anymore.” Then it’s too late to take corrective
action.

Acknowledge that some horrible things happened in the shipping mania. But before
adding features or fixing bugs in the next release, give the developers time to clean up the
mess. Pay back the technical debt they incurred in the previous version’s end game.
Otherwise these hacks will haunt the system forever, reduce overall productivity as the
team struggles with the lousy code in each maintenance cycle, and eventually cause the
code to rot to the point of uselessness.

Tools
A poll on embedded.com (http://embedded.com/pollArchive/?surveyno=12900001)
suggests 85% of companies won’t spend more than $1k on any but the most essential
tools. Considering the $100k+ loaded cost of a single engineer, it’s nuts to not spend a
few grand on a tool that offers even a small productivity boost.

Like what? Lint, for one. Lint is a program that examines the source code and identifies
suspicious areas. It’s like the compiler’s syntax checker, but one on steroids. Only Lint is
smart enough to watch variable and function usage across multiple files. Compilers can’t
do that. Aggressive Lint usage picks out many problems before debugging starts, for a
fraction of the cost. Lint all source files before doing code inspections.

Gimpel (www.gimpel.com) sells one for $239. It’s up to you to buy it, and to insure your
engineers use it on all new code. Lint is annoying at first, often initially zeroing in on
constructs that are indeed fine. Don’t let that quirk turn your people off. Tame it, and
then reap great reductions in debugging times.

Debugging eats 50% of most projects’ schedules. The average developer has a 5 to 10%
error rate. Anything that trims that even a smidgen saves big bucks.

Make sure the developers aren’t cheating their tools. Warning levels on compilers, for
instance, should be set to the lowest possible level so all warnings are displayed. And
then insist the team writes warning-free code. It’s astonishing how we ship firmware that
spews warnings when compiled. The compiler, which understands the language’s syntax
far better than any of your people, is in effect shouting “Look here. Here! This is scary!”
How can anyone ignore such a compelling danger sign?

Write warning-free code so that maintenance people in months or decades won’t be
baffled by the messages. “Is it supposed to do this? Or did I reinstall the compiler
incorrectly? Which of these is important?” This means changing the way they write C.
Use explicit casting. Parenthesis when there’s any doubt. These are all good

A Boss’s Guide to Software Process Improvement

© 2004 The Ganssle Group. This work may be used by individuals and companies, but

all publication rights reserved.

programming practices anyway, with zero cost in engineering, execution speed, or code
size. What’s the downside?

Editors, compilers, linkers, and debuggers are essential and non-negotiable tools as it’s
impossible to do any development without these. Consider others. Complexity analyzers
can yield tremendous insight into functions, identifying “bad code” early, before the team
wastes their time and spirits trying to beat the cruddy code into submission. See
www.chris-lott.org/resources/cmetrics/ for a list of freebies. Bug tracking software helps
identify problem areas – see a list of resources at http://www.aptest.com/resources.html.

Most firmware developers are desperate for better debugging tools. Unhappily, the grand
old days of in-circuit emulators are over. These tools provided deep insight into the
intrinsically hard-to-probe embedded system. Their replacement, the BDM, offers far less
capability. Have mercy on your folks and insist the hardware team dedicate a couple of
spare parallel output bits just to the software people. They’ll use these along with
instrumented code for a myriad of debugging tasks, especially for hard-to-measure
performance issues.

Peopleware
Your developers – not tools, not widgets, not components - are your prime resource. As
one wag noted, “my inventory walks out the door each night.”

I’ve recommended several books. Please, though, read Peopleware by DeMarco and
Lister (ISBN 0932633439, 1999 Dorset House Publishing, NY NY). It’s a slender
volume that you’ll plow through in just a couple of enjoyable hours. Pursuing the elusive
underpinnings of software productivity, for 10 years the authors conducted a “coding
war” between volunteering companies.

The results? Well, at first the data was a scrambled mess. Nothing correlated. Teams that
excelled on the projects (by any measure: speed, bug count, matching specs) were neither
more highly paid nor more experienced than the losers. Crunching every parameter
revealed the answer: developers imprisoned in noisy cubicles, those who had no defense
against frequent interruptions, did poorly.

How poorly? The numbers are breathtaking. The best quartile was 300% more productive
than the lowest 25%. Yet privacy was the only difference between the groups.

Think about it – would you like 3x faster development?

It takes your developers 15 minutes, on average, to move from active perception of the
office busyness to being totally and productively engaged in the cyberworld of coding.
Yet a mere 11 minutes passes between interruptions for the average developer. Ever

A Boss’s Guide to Software Process Improvement

© 2004 The Ganssle Group. This work may be used by individuals and companies, but

all publication rights reserved.

wonder why firmware costs so much? Email, the phone, people looking for coffee filters
and sometimes you, boss, all clamor for attention

Sadly, most developers live in cubicles today, which are, as Dilbert so astutely noted,
“anti-productivity pods.” Next time you hire someone peer into his cube occasionally. At
first he’s anxious to work hard, focus, and crank out a great product. He’ll try to tune out
the poor sod in the next cube who’s jabbering on the phone with his lawyer about the
divorce. But we’re all human; after a week or so he’s leaning back from the keyboard,
ears raised to get the latest developments. A productive environment? Nope.

I advise you to put your developers in private offices, with doors and off-switches on the
phones. You probably won’t do that. Every time I’ve fought this battle with management
I’ve lost, usually because the interior designers promise cubes offer more “flexibility.”
But even cubicles have options.

Encourage your people to identify their most productive hours, that time of day when
their brains are engaged and working at max efficiency. Me, I’m a morning person.
Others have different habits. But find those productive hours and help them shield
themselves from interruptions for about three hours a day. In that short time, with the 3x
productivity boost, they’ll get an entire day’s work done. The other five hours can be
used for meetings, email, phone contacts, supporting other projects, etc.

Give your folks a curtain to pull across the cube’s opening. Obviously a curtain rod
would decapitate employees, generally a bad idea despite the legions of unemployed
engineers clamoring for work. Use a Velcro strip to secure the curtain in place. Put a sign
on the curtain labeled “enter and die;” the sign and curtain go up during the employee’s 3
superprogramming hours per day. Train the team to respect their colleagues’ privacy
during these quiet hours. At first they’ll be frantic: “but I’ve GOT to know the input
parameters to this function or I’m stuck!” With time they’ll learn when Joe, Mary or Bob
will be busy and plan ahead. Similarly, if you really need a project update and Shirley has
her curtain up, back slowly and quietly away. Wait till their hours of silence are over.

Have them turn off their phone during this time. If Mary’s spouse needs her to pick up
milk on the way home, well, that’s perfect voicemail fodder. If the kids are in the
hospital, then the phone attendant can break in on her quiet time.

The study took place before email was common. You know, that cute little bleep that
alerts you to the same tired old joke that’s been circulating around the ‘net for the last
three months… while diverting attention from the problem at hand. Every few seconds, it
seems. Tell your people to disable email while cloistered.

When I talk to developers about the interruption curse they complain that the boss is the
worst offender. Resist the temptation to interrupt. Remember just how productive that
person is at the moment, and wait till the curtain comes down.

A Boss’s Guide to Software Process Improvement

© 2004 The Ganssle Group. This work may be used by individuals and companies, but

all publication rights reserved.

(If you’re afraid the employee is hiding behind the curtain surfing the net or playing
Doom, well, there are far more severe problems than just productivity issues. Without
trust – mutual trust – any engineering department is in trouble).

Other Tidbits
Where should you use your best people? It’s natural to put the superprogrammers on the
biggest and most complex projects. Resist that urge – it’s wrong.

Capers Jones showed that the best people excel on small (one man-month) projects,
typically being 6 times more productive than the worst members of the team. That
advantage diminishes as the system grows. On an 8 man-month effort the ratio shrinks to
under 3 to 1. At 64 man-months it’s about 1.5 to 1, and much beyond that the best do as
badly as the worst. Or the worst as well as the best. Whatever.

That observation tells us something important about how we partition big projects. Find
ways to break big systems down into many small, mostly independent parts. Or at least
strip out as much as possible from the huge carcass of code you’re planning to generate,
putting the removed sections into their own tasks or even separate processors. Give these
smaller sections to the superprogrammers. They’ll crank out solutions fast.

An example: suppose an I/O device, say an optical encoder, is tied to your system.
Remove it. Add a CPU, a cheap PIC, ATMEL, Z8 or similar sub-$1 part, just to manage
that one device. Have it return its data in engineering units: “the shaft angle is 27
degrees.” Even a slowly rotating encoder would generate thousands of interrupts a
second, a burden to even the fastest CPU that’s also tasked with a many other activities.
Yet even a tiny microcontroller can easily handle the data if there’s nothing else going
on. One smart developer can crank out perfect I/O code in little time.

(An important rule of thumb states that 90% loaded systems double development time,
compared to one of 70% or less; 95% loading triples development time.)

While cleverly partitioning the project for the sake of accelerating the development
schedule, think like the customer does, not as the firmware folks do. The customer only
sees features; never objects, ISRs or functions. Features are what sell the product.

That means break the development effort down into feature-chunks. The first feature of
all, of course, is a simple skeleton that sets up the peripherals and gets to main(). That
and a few critical ISRs, perhaps an RTOS and the like form the backbone upon which
everything else is built.

Beyond the backbone are the things the customer will see. In a digital camera there’s a
handler for the CCD, an LCD subsystem, some sort of Flash filesystem. Cool tricks like

A Boss’s Guide to Software Process Improvement

© 2004 The Ganssle Group. This work may be used by individuals and companies, but

all publication rights reserved.

image enhancement, digital zoom, and much more will be the sizzle that excites
marketing. None of those, of course, has much to do with the basic camera functionality.

Create a list of the features and prioritize. What’s most important? Least? Then… and
this is the trick… implement the most important features first.

Does that sound trite? It is, yet every time I look at a product in trouble no one has taken
this step. Developers have virtually every feature half-implemented. The ship date arrives
and nothing works. Worse, there’s no clear recovery strategy since so much effort has
been expended on things that are not terribly important.

So in a panic management starts tossing out features. One 2002 study showed that 74%
of projects wind up with 30% or more of the features being eliminated. Not only is that a
terrible waste – these are partially implemented features – but the product goes to market
late, with a subset of its functionality. If the system were built as I’m recommending,
even schedule slippages would, at worst, result in scrubbing a few requirements that had
as yet not consumed engineering time. Failure, sure, but failure in a rather successful
way.

Finally, did you know great code, the really good stuff, that which has the highest
reliability, costs the same as cruddy software? This goes against common sense. Of
course, all things being equal, highly safety critical code is much more expensive that
consumer-quality junk.

But what if we don’t hold all things equal? O. Benediktsson (Safety Critical Software and
Development Productivity, conference proceedings, Second World Conference on
Software Quality, Sept 2000) showed that using higher and higher levels of disciplined
software process lets one build higher-rel software at a constant cost. If your projects
march from low reliability along an upwards line to truly safety-critical code, and if your
outfit follows, in his study, increasing levels of the Capability Maturity Model, the cost
remains constant.

Makes one think. And hopefully, it makes one reign in the hackers who are more focused
on cranking code than specifying, designing, and carefully implementing a world-class
product.

Better Firmware… Faster!

A One-Day
Seminar

Presented at

Your Company

Does your
schedule prevent

you from traveling?

This doesn’t mean you
have to pass this great

opportunity by.

Presented by Jack
Ganssle, technical
editor of Embedded

Systems Programming
Magazine, author of 6

books and over 600
articles

More information at
www.ganssle.com

The Ganssle Group
PO Box 38346

Baltimore, MD 21231
(410) 504-6660

fax: (647) 439-1454
info@ganssle.com
www.ganssle.com

For Engineers

and

Programmers

This seminar will teach you new ways to build higher
quality products in half the time.

80% of all embedded systems are delivered late…

Sure, you can put in more hours. Be a hero. But working harder is not a

sustainable way to meet schedules. We’ll show you how to plug productivity

leaks. How to manage creeping featurism. And ways to balance the conflicting

forces of schedules, quality and functionality.

… yet it’s not hard to double development productivity

Firmware is the most expensive thing in the universe, yet we do little to

control its costs. Most teams deliver late, take the heat for missing the

deadline, and start the next project having learned nothing from the last.

Strangely, experience is not correlated with fast. But knowledge is, and we’ll

give you the information you need to build code more efficiently, gleaned from

hundreds of embedded projects around the world.

Bugs are the #1 cause of late projects…
New code generally has 50 to 100 bugs per thousand lines. Traditional

debugging is the slowest way to find bugs. We’ll teach you better techniques

proven to be up to 20 times more efficient. And show simple tools that find the

nightmarish real-time problems unique to embedded systems.

… followed by poor scheduling

Though capricious schedules assigned without regard for the workload are

common, even developers who make an honest effort usually fail. We’ll show

you how to decompose a product into schedulable units, and how to use killer

techniques like Wideband Delphi to create more accurate estimates.

 Learn From The Industry’s Learn From The Industry’s Learn From The Industry’s Learn From The Industry’s GuruGuruGuruGuru

Spend a day with Jack Ganssle, well-known author of the most popular books

on embedded systems, technical editor and columnist for Embedded Systems

Programming, and designer of over 100 embedded products. You’ll learn new

ways to produce projects fast without sacrificing quality. This seminar is the

only non-vendor training event that shows you practical solutions that you can

implement immediately. We’ll cover technical issues – like how to write

embedded drivers and isolate performance problems – as well as practical

process ideas, including how to manage your people and projects. Contact us

to learn how we can award each of the attendees 0.7 Continuing Education

Units.!

Seminar Leader

Jack Ganssle has written over 600 articles in Embedded Systems Programming, EDN, and other

magazines. His five books, The Art of Programming Embedded Systems, The Art of Developing

Embedded Systems, The Embedded Systems Dictionary, The Firmware Handbook, and

Embedded Systems, World Class Designs are the industry’s standard reference works

Jack lectures internationally at conferences and to businesses, and was this year’s keynote speaker at the

Embedded Systems Conference. He founded three companies, including one of the largest embedded tool

providers. His extensive product development experience forged his unique approach to building better firmware

faster.

Jack has helped over 600 companies and thousands of developers improve their firmware and consistently deliver

better products on-time and on-budget.

Course Outline

Languages

• C, C++ or Java?

• Code reuse – a myth? How can you benefit?

• Controlling stacks and heaps.

Structuring Embedded Systems

• Manage features… or miss the schedule!

• Using multiple CPUs.

• Five design schemes for faster development.

Overcoming Deadline Madness

• Negotiate realistic deadlines… or deliver late.

• Scheduling – the science versus the art.

• Overcoming the biggest productivity busters.

Stamp Out Bugs!

• Unhappy truths of ICEs, BDMs, and debuggers.

• Managing bugs to get good code fast.

• Quick code inspections that keep the schedule on-track.

• Cool ways to find hardware/software glitches.

Managing Real-Time Code

• Design predictable real-time code.

• Managing reentrancy.

• Troubleshooting and eliminating erratic crashes.

• Build better interrupt handlers.

Interfacing to Hardware

• Understanding high-speed signal problems.

• Building peripheral drivers faster.

• Inexpensive performance analyzers.

How to Learn from Failures… and Successes

• Embedded disasters, and what we must learn.

• Using postmortems to accelerate the product delivery.

• Seven step plan to firmware success.

Do those C/C++ runtime routines execute in a usec or a week?

This trig function is all over the map, from 6 to 15 msec. You’ll

learn to rewrite real-time code proactively, anticipation timing

issues before debugging.

Why Take This Course?

Frustrated with schedule slippages? Bugs driving you

batty? Product quality sub-par? Can you afford not

to take this class?

We’ll teach you how to get your products to market

faster with fewer defects. Our recommendations are

practical, useful today, and tightly focused on

embedded system development. Don’t expect to hear

another clever but ultimately discarded software

methodology. You’ll also take home a 150-page

handbook with algorithms, ideas and solutions to

common embedded problems.

0

10

20

30

40

50

60

49
50

57
18

64
86

72
54

80
22

87
90

95
58

10
32

6

11
09

4

11
86

2

12
63

0

13
39

8

14
16

6

14
93

4

Microseconds

P
ro

b
a

b
il
it

y

Here is what some

of our attendees

have said:

If you can’t take the time to travel, we can present this seminar

 at your facility. We will train all of your developers and focus on the challenges
unique to your products and team.

 Thanks for the terrific seminar here at ALSTROM yesterday!

It got rave reviews from a pretty tough crowd.

Cheryl Saks, ALSTROM

Thanks for a valuable, pragmatic, and informative lesson in embedded systems design.

 All the attendees thought it was well worth their time.

Craig DeFilippo, Pitney Bowes

I just wanted to thank you again for the great class last week. With no exceptions, all of the feedback from the

participants was extremely positive. We look forward to incorporating many of the suggestions and observations

into making our work here more efficient and higher quality.

Carol Bateman, INDesign LLC

Here are just a few of the companies where Jack has presented this seminar:

Sony-Ericsson, Northup Grumman, Dell, Western Digital, Bayer, Seagate, Whirlpool, Cutler

Hammer, Symbol, Visteon, Honeywell, Kodak and Western Digital.

Did you know that…

… doubling the size of the code results in much more than twice the work? In this seminar you’ll learn ways

unique to embedded systems to partition your firmware to keep schedules from skyrocketing out of control.

… you can reduce bugs by an order of magnitude before starting debugging? Most firmware starts off with a 5-

10% error rate – 500 or more bugs in a little 10k LOC program. Imagine the impact finding all those has on

the schedule! Learn simple solutions that don’t require revolutionizing the engineering department.

… you can create a predictable real-time design? This class will show you how to measure the system’s

performance, manage reentrancy, and implement ISRs with the least amount of pain. You’ll even study real

timing data for common C constructs on various CPUs.

… a 20% reduction in processor loading slashes development time? Learn to keep loading low while simplifying

overall system design.

… reuse is usually a waste of time? Most companies fail miserably at it. Though promoted as the solution to the

software crisis, real reuse is much tougher than advertised. You’ll learn the ingredients of successful reuse.

What are you doing to upgrade your skills? What are you doing to help your engineers succeed? Do you

consistently produce quality firmware on schedule? If not . . . what are you doing about it?

Contact us for info on how we can bring this seminar to your company.
e-mail: info@ganssle.com or call us at 410-504-6660.

